obsinfo
Release 0.110

Luis Arean and Wayne Crawford

Sep 14, 2023

TABLE OF CONTENTS:

Overview

1.1 Introduction e e e e e e e e e e e e e e
1.2 ObjectModel e e e e e
1.3 Information Files e
14 RESOUICES . . . v v v e e e e e e e e e e e e e e e e e

Installation and Startup Guide

2.1 PrerequiSites L e e e e e e e e e e
2.2 Pythoninstallation e e e e e e e e e
2.3 Pythonpackages o o i e e e e e e e e e e e
24 Gitinstallation L. e
2.5 Obsinfoinstallation Lo e e e e e
2.6 Description of obsinfo file structure L. e
2.7 0bsinfoSetup e e e e e e e e e e e
2.8 FiledisCovery i e e e e e e e e e e e e e
Command-line tools

3.1 0bSInfo-SEtUP e e e e e e e e e e e e e e
3.2 obsinfo-makeStationXML e
3.3 obsinfo-validate L e
3.4 obsinfo-printo L L e e e e e e e e
Tutorial

4.1 Introduction L e e e
4.2 The general structure of information files L L o oo
43 Asimplesubnetwork file
4.4 Building a simple instrumentation file with channels
4.5 Building instrument component files with response stages: sensors and preamplifiers
4.6 Building a datalogger informationfile o oL Lo oo
4.7 Building a stage information file with different filters 0oL
4.8 Building a filter information file for different filters 0oL
4.9 Summaryo e e e e e e e e

Information files

S.1 OVEIVIEW . . . o L e e e e e e e
5.2 base-configuration-modification L e e
5.3 Comparison with StationXML e e
54 Comparison with AROL/YASMINE oo
5.5 Examples e e e e e e e

Datacite information files

N W N =

S O O O oo J I

—_

13

13
15
15

17
17
20
2
27
34
39
41
44
46

49
49
59
62
80
91

97

6.1 Introduction e e e e e e 97

7 Advanced 101
7.1 Base-configuration-modificationso e 101
7.2 AROL compatibility o e e e e e e e e e e 117
7.3 BestpractiCes v v v v v e e e e e e e e e e e e e e e e e e 118
T4 NOES . o o o ot e e e e e e 121
TS5 Caveats e e e e e e e e e e 121
7.6 Troubleshooting e e e e e 122
TT Addons . . .o e e e 123
8 Nomenclature 125
9 Training Course 127
9.1 Introducingobsinfo. L 127
0.2 Settingup 135
9.3 Creating a StationXML file using your own instruments and deployments 136
9.4 Advanced iSSUES e e 137
0.5 Future plans e e e e e e e e e e e e e 137
10 Developer’s Corner 143
10.1 Introduction e e 143
102 CIasses o v vt 145
10.3 Fundamentals L e e 205
10.4 Delay correction e e 206
10.5 Base-Configuration-Modifications L e 206
10.6 File diSCOVery o o e e e e e e e e e e e e e 218
10.7 ObsMetadatao oo e e e 219
10.8 Filters o o e e e e 219
109 Schemafiles L e e e e e 220
10.10 Logging o o o e e e e 220
1011 Testing o v o e 220
11 Technical Documentation 223
11.1 Code Documentation: obsinfo package 223
12 CHANGELOG 239
13 Indices and tables 241
Python Module Index 243
Index 245

CHAPTER
ONE

OVERVIEW

1.1 Introduction

obsinfo is a Python standalone application for creating FDSN-standard (StationXML) data and metadata for ocean
bottom seismometers using standardized, easy-to-read information files in YAML or JSON formats. The advantages
of obsinfo are the following:

* Easier input user format, as YAML and JSON syntax is simpler than XML

¢ Avoiding redundancy ("Don't Repeat Yourself™_)

* Flexibility to change configurations avoiding rewriting or modifying a new StationXML file each time
* Autonomy of operation from Internet connections, being text-based

» Adapts StationXML to OBS-specific functionality

» Simple interface to other systems, such as Yasmine

Unlike general systems like Yasmine, obsinfo is designed to reflect the vast variability of OBS equipment and the fact
that changes on the field are common and cannot be planned in advance. Emergency procedures such as changing an
equipment component or a stage in the high seas need to accounted for. The fact that the editing of information needs
to occur without connection to a central database is also a consideration. We have therefore chosen to avoid a GUI such
as Yasmine and make obsinfo totally text-based using regular files. At the same time, every effort has been made to
stay compatible with AROL, which is based on an earlier version of obsinfo itself, so AROL yaml files can be imported
into obsinfo. However, as of this publication, some differences exist.

Reuseability and lack of redundancy ais achieved by creating a repository of instrumentations which is referenced time
and again by different campaigns. Flexibility is achieved by permitting these instrumentations to have several selectable
configurations, as well as the ability to make punctual changes to any field via channel modifications (see Advanced
Topics).

obsinfo also manages two “parallel” information file types: experiment and datacite. These files are not needed for
creating StationXML but are useful for validating data and metatdata and for creating DataCite files for DOI. The
datacite_ information file only contains fields that the lead scientist should provide to a data center.

https://yaml.org/spec/1.2/spec.html
https://www.json.org/json-en.html
https://github.com/iris-edu/yasmine-stationxml-editor
https://github.com/iris-edu/yasmine-stationxml-editor

obsinfo, Release 0.110

1.2 Object Model

OIS <

network info

instrumentation

!

channel(s)

tlmmg_bases

Instrument Components

filter filter filter
(FIR, PZ, A2D, etc) (FIR, PZ, A2D, etc) (FIR, PZ, A2D, etc)

The reference manual is organized around the object model, in pages that describe each particular class. The object
hierarchy starts in Class Network. You can navigate from one class to the other by using the Relationships section.

2 Chapter 1. Overview

obsinfo, Release 0.110

1.3 Information Files

The system is based on “information files” in JSON or YAML format as input, filled in by appropriate actors and broken
down into different categories to remove redundancy and simplify input as much as possible. Information files are taken
as input and converted first to an obsinfo object, which in turn gets converted to an ObsPy object and then is output as
a StationXML file.

There are 6 main file types for StationXML and processing path creation:

Name Description Filled by When filled
subnetwork Deployed stations, their | OBS facility after a campaign
instruments and parame-
ters
instrumentation Instrument description OBS facility new/changed instruments
) Description of basic com- | OBS facility -or- compo- | when there are new are
instrument_components .
ponents nent manufacturer new components or cali-
sensors .
brations
components
dataloggers
response_stage Description of stages OBS facility -or- compo- | when there are new com-
digitizers, ampli- | nent manufacturer ponents or calibrations
fiers/filters)
filter Description of filters am- | OBS facility -or- compo- | when there are new com-
plifiers and digitizers used | nent manufacturer ponents or calibrations
in stages

Only the subnetwork files are OBS-specific and for most data-collection campaigns they are all you’ll need to fill out.

The instrumentation files and their subfiles could be replaced by existing standards such as RESP files or the NRL
(Nominal Response Library), but obsinfo provides a simpler and more standards-compliant way to specify the com-
ponents, and it automatically calculates response sensitivities based on gains and filter characteristics (using ObsPy).
obsinfo instrumentation files could also be used to make RESP-files and NRL directories (not yet coded).

There are 2 other (optional) file types for quality control and Datacite creation:

Name | Description Filled by | When filled
experi- | Lists of stations facilities and participants, plus desired verification. | Chief after a data collec-
ment NOT NEEDED FOR PROCESSING scientist | tion campaign

dat- Scientist-specific information for DOI datacite files Chief after a data collec-
acite scientist | tion campaign

1.3.1 File Hierarchy

It is recommended to arrange the information files in a file hierarchy such as this:

/authors (contains files used in headers of other information files)
/network

/instrumentation

/sensors

/preamplifiers

/dataloggers

(continues on next page)

1.3. Information Files 3

https://www.json.org/json-en.html
https://yaml.org/spec/1.2/spec.html
https://github.com/obspy/obspy/wiki
https://github.com/obspy/obspy/wiki

obsinfo, Release 0.110

(continued from previous page)

[/instrumentation_componenent]/stages
[instrumentation_componenent]/stages/filters

where [instrumentation_componenent] = sensors, preamplifiers or dataloggers.

The hierarchy is completely up to the user, including the names of the folders/directories. In fact, it is perfectly
possible to put all the information in a single file, although it is not recommended as reusability of filters, stages or
components depends on independent files.

To reference a file from within another file, use the JREF syntax:

authors: - {$ref: "../authors/Wayne_Crawford.author.yaml#author"}

The effect of this directive is at the core of the philosophy of obsinfo, as it is this mechanism which allows reuse: it
substitutes the content of the key author within the file .. /authors/Wayne_Crawford.author.yaml as the value
of the key authors. If you want to include the complete file, remove the #author anchor.

1.3.2 File Naming Convention

While there is flexibility about the folder hierarchy, information files must follow the following naming convention:
<descriptive file name>.<obsinfo file type>.<file format>
where

<descriptive file name> usually includes vendor and configuration shorthand to make the file easily iden-
tifiable by users,

<obsinfo file type> is one of campaign, network, instrumentation, sensor, preamplifier,
datalogger, stage, filter

<file format> is one of yml, yaml or json.
Examples:
e TI_ADS1281_FIR1.stage.yml is a stage with a Texas Instruments FIR filter nested in it, in YAML format.

e BBOBS.INSU-IPGP.network. json is a network of broad-band stations deployed by INSU IPGP, in JSON for-
mat.

There are three resources to look up the exact syntax for each information file. One is the /ntroduction which takes you
step by step building a typical hierarchy of information files. The different Classes pages have a complete explanation
of all the attributes in the class. Unless otherwise noted, attributes in the file have the same syntax as attributes in the
class. The third resource is the formal syntax of the file, which is a JSON schema, which is always referenced in the
Class page.

1.3.3 File Metadata

All information files contain common metadata

e format_version: - This is a required field. It reflects the template version against which this file must be
validated

* revision: - Revision information (date in particular) to keep change control of file.
— date: - date of revision

— authors: - authors of revision, usually a reference to an author file

4 Chapter 1. Overview

obsinfo, Release 0.110

* notes: - Optional extra information which will not be put in final metadata.

e yaml_anchors: - YAML anchors to avoid redundancy, for advanced YAML users. Here is a guide on how to
use YAML anchors.

1.4 Resources

Installation and Startup Guide <InstallStartup>

Tutorial <Tutoriall>

Class Reference Pages <classl 1>

Information File Templates <FILE>

For the YAML specification, see YAML . For a tutorial, see YAML Tutorial
For the JSON specification, see JSON . For a tutorial, see JSON Tutorial
For the JREF notation, see JREF Notation

For the StationXML reference, see FDSN StationXML Reference

1.4. Resources 5

https://medium.com/@kinghuang/docker-compose-anchors-aliases-extensions-a1e4105d70bd
https://yaml.org/spec/1.2/spec.html
https://www.tutorialspoint.com/yaml/index.htm
https://www.json.org/json-en.html
https://www.tutorialspoint.com/json/index.htm
https://tools.ietf.org/id/draft-pbryan-zyp-json-ref-03.html
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html

obsinfo, Release 0.110

6 Chapter 1. Overview

CHAPTER
TWO

INSTALLATION AND STARTUP GUIDE

2.1 Prerequisites

obsinfo requires Python 3.9 or higher.

2.1.1 Linux

Most Linux installations have Python preinstalled. However, it might not be the latest version. Check the version and
update to 3.9 at least.

To check your version, use any of the following commands:

$ python --version
$ python2 --version

$ python3 --version

2.1.2 Windows

We have not tested the current version of Windows and we don’t expect that it will work without some modifications.
You must have Windows 10 installed.

2.2 Python installation

The following link provides complete information on how to install Python in several platforms:
https://realpython.com/installing- python/#how-to-check- your-python- version-on-linux

The official installation guide for UNIX is here:

https://docs.python.org/3/using/unix.html

Windows:

https://docs.python.org/3/using/windows.html

MacOS:

https://docs.python.org/3/using/mac.html

https://realpython.com/installing-python/#how-to-check-your-python-version-on-linux
https://docs.python.org/3/using/unix.html
https://docs.python.org/3/using/windows.html
https://docs.python.org/3/using/mac.html

obsinfo, Release 0.110

2.3 Python packages

The following packages must be installed, preferably with a package manager, either using pip or conda.

Instructions to install a package using pip. If you don’t have pip installed, this same link instructs you who to install

it.
https://packaging.python.org/tutorials/installing-packages/

Instructions to install a package using conda

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html

Packages

Standard library (no need to install)

difflib
glob
inspect
json
math
pathlib
pprint
0s

re

sys
unittest
warnings

External libraries

jsonschema
jsonref
gitlab
numpy
obspy
pyyaml

In particular obsinfo relies on obspy to create the objects needed to output a StationXML file.

2.4 Git installation

If you wish to install obsinfo using git, you have to install it first.

Linux:

$ sudo apt-get install git

In Windows, download from this site:

https://git-scm.com/download/win

Chapter 2. Installation and Startup Guide

https://packaging.python.org/tutorials/installing-packages/
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html

obsinfo, Release 0.110

2.5 Obsinfo installation

obsinfo is a published package in PyPI. Currently, version v0.111-beta.1 is available.
Make sure you have the latest pip version: .. code-block:: console
$ python3 -m pip install —upgrade pip

or

$ python -m pip install --upgrade pip

depending on your Python configuration.

Next, use pip to install obsinfo:

$ python3 -m pip install obsinfo

or

$ python -m pip install obsinfo

depending on your Python configuration.

2.6 Description of obsinfo file structure

data YAML/JSON schemas
_examples Example information files
instrumentation | Python code

main Python code

misc Python code

network Python code
obsMetadata Python code

2.7 Obsinfo setup

Linux:
The obsinfo executables are:
* obsinfo-makeStationXML to create StationXML files
* obsinfo-validate to validate the syntax of information files

* obsinfo-print to print information files without creating the StationXML file. This may be useful as a test or
to discover configurations

All executables are installed in ~/.1ocal/bin, which is usually in the PATH variable of the operating system. If this
is not the case, add that directory:

$ PATH=$PATH:$HOME/.local/bin
$ export PATH

2.5. Obsinfo installation 9

obsinfo, Release 0.110

To avoid having to set up the variable in each session, store these instructions in your .bashrc file in your home directory.

Remember in Windows and MacOS you can setup the variable in the configuration panel. Follow the instructions to
set environment variables.

After having installed obsinfo with pip or conda, you need to run a setup. This gives you an opportunity of creating
a local directory where the existing examples of information files will be copied, instead of the arcane and standard
~/.local/lib/python3.x/site-packages/obsinfo/_examples/Information_Files.

To do so, simply run:

$ obsinfo-setup -d <directory name>

The program will copy the examples to the directory mentioned and will perform other administrative tasks.

IMPORTANT: EVEN if you don’t want to create a new directory, you MUST run obsinfo-setup, as it performs
several housekeeping tasks, notably creating the configuration file .obsinforc and the directory .obsinfo which is
used for logging.

obsinfo-setup is very flexible. Through it you can reconfigure several variables that will tell obsinfo where to find
your files. More on this in the next section.

2.8 File discovery

obsinfo-setup sets several variables specific to obsinfo and stores them in a configuration file called .obsinforc
in your home directory called .obsinforc. Here they are with their default values:

gitlab_repository: www.gitlab.com

gitlab_project: resif/obsinfo

gitlab_path: _examples/Information_Files

datapath: [https://www.gitlab.com/resif/obsinfo/obsinfo/_examples/Information_Files]
obsinfo_branch: master

The first, second and third variables are used to tell obsinfo where the remote repository for information files is. The
fourth one needs more explanation. It works like the PATH variable in Linux: whenever a file in a $ref is found in an
information file, obsinfo will sequentally look for the file in all the directories specified in obsinfo_datapath. In
the default case, the only place where obsinfo will look is the remote directory. Observe this is the concatenation of the
first three variables, the repository, the project and the path.

Finally, since the remote repository is assumet to be a gitlab repository, we must specify a gitlab branch, which by
default is master.

All these defaults are achieved by simply running:

$ obsinfo-setup

with no parameters. But with options you can specify all the variables. gitlab_repository is specfied with -g,
gitlab_project with -p, gitlab_path with -P and obsinfo_branch with -b.

Other options allow you to not copy the examples (-x) or modify the datapath variable. This is done so you don’t have
to manually edit .obsinforc which is discouraged. Three local directories are considered in datapath: a working
directory, a local repository and an example directory. We have seen that the -d option creates (if non existing) the
example directory. When specified, this directory takes precedence over the remote directory (unless -x is specified).
The datapath variable will look like:

datapath: [<local example directory>, https://www.gitlab.com/resif/obsinfo/obsinfo/_
—examples/Information_Files]

10 Chapter 2. Installation and Startup Guide

obsinfo, Release 0.110

where <local example directory> is the directory specified with -d. If you add the working directory (with -w)
and the local repository (with -1), they will take precedence in this order:

datapath: [<working directory>, <local repository>, <local example directory>, https://
—www.gitlab.com/resif/obsinfo/obsinfo/_examples/Information_Files]

You can change the order putting the remote repository first by using the -v option. Of course, you change the order
of the local directories by simply specifying one or the other as working, local repository or example.

All this is summarized here:

-X, --no_examples Don't import examples, only templates, and remove
examples directory from the datapath

-Cc, --no_copy Don't import anything at all, don't create dest
directory, which will be removed from datapath

-n, --no_remote Install obsinfo without access to a gitlab repository.

May be needed in some operating systems for
compatibility issues
-v, --invert_datapath
Put remote gitlab repository first. All local
directories will keep their order
-b, --branch Specifies the git branch to use, if not master
-d DEST, --dest DEST Destination directory for templates and examples.
-g GITLAB, --gitlab GITLAB
Gitlab repository)
-p PROJECT, --project PROJECT
path to project and the directory where information
files lie within the Gitlab repository)
-1 LOCAL_REPOSITORY, --local_repository LOCAL_REPOSITORY
Specify local repository for information files and
include it as first or second option in datapath
-w WORKING_DIRECTORY, --working_directory WORKING_DIRECTORY
Specify working directory for obsinfo and include it
as first option in datapath
-P REMOTE_PATH, --remote_path REMOTE_PATH
Specify remote directory under project

IMPORTANT: In datapath, the remote directory is always the concatenation of gitlab_repository,
gitlab_project and gitlab_path when created by obsinfo-setup. Therefore, if you manually
change the datapath in the .obsinforc file you will not get the expected result. Always use obsinfo-setup
to change that file.

Of course, you will create your own information files in a directory selected by you.

2.8. File discovery 11

obsinfo, Release 0.110

12 Chapter 2. Installation and Startup Guide

CHAPTER
THREE

COMMAND-LINE TOOLS

There are four main command-line tools:
* obsinfo-setup
¢ obsinfo-makeStationXML
* obsinfo-validate

¢ obsinfo-print

3.1 obsinfo-setup

creates an .obsinforc file that indicates where obsinfo should look for the reference files. More details in the Installation
and Startup Guide

3.2 obsinfo-makeStationXML

Now you’re all set to run obsinfo. Type

$ obsinfo-makeStationXML -h

to display all the options of makeStationXML. Most are self-explanatory.

To create a StationXML file from a file called <filename>, type:

$ obsinfo-makeStationXML [options] filename

The output file, by default, will have the stem part of the network filename followed by “station.xml”. That is, if the
filename to be processed is BBOBS . INSU-IPGP.network.yaml, the resulting file will be called by default BBOBS.
INSU-IPGP.station.xml. This can be changed with the -o option.

A single file is processed at a time. This is basically to simplify operation and avoid confusion with file discovery.
However, a for statement in a shell script can be used to process several files at a time, as is customary.

The most important thing about the way obsinfo-makeStationXML operates is where it finds its information files. As a
rule, the argument you pass to the application must have a non-ambiguous path to a network information file, such as:

..code-block:

13

obsinfo, Release 0.110

BBOBS . INSU-IPGP.network.yaml
./BBOBS . INSU-IPGP.network.yaml
/home/arean/examples/BBOBS.INSU-IPGP.network.yaml

../../my_examples/BBOBS.INSU-IPGP.network.yaml

Standard POSIX notation is used. The first and second examples will look for the file in the current working directory.
The third one is called an absolute path and will try to locate the file in the /home/arean/examples/ directory. The fourth
one is a path relative to the working directory which will go up to levels and then down to /my_examples to find the
file.

All other files (i.e. the files in $ref attributes, will operate in a different fashion. Examples two, three and four will work
in the same way, but example one will be considered a file that needs discovery. This discovery is performed through
the variable obsinfo_datapath, which is a list of directories separated by commas, in typical Python/YAML syntax.
Every director is visited in sequence. When the file is found in one of the, the discovery stops. If not file is found in
any of the directories, an error message is generated.

We can also make the filename passed as argument to obsinfo-makeStationXML behave in this way with the option
-r. If we use this option, even the network file passed as an argument will be discovered in one of the directories in
OBSINFO_DATAPATH.

The rest of the options are self-explanatory, and are explained by a message generated with:

$ obsinfo-makeStationXML -h
usage: obsinfo-makeStationXML [-h] [-r] [-1] [-v] [-q] [-d] [-t] [-V]
[-o OUTPUT]

input_£filename

positional arguments:
input_filename is required and must be a single value

optional arguments:

-h, --help show this help message and exit
-r, --remote Assumes input filename is discovered through obsinfo_datapath.
Does not affect treatment of $ref in info files

-1, --validate Performs complete validation, equivalent to obsinfo-validate,.
—before processing

-v, --verbose Prints processing progression

-q, --quiet Silences a human-readable summary of processed information file

-d, --debug Turns on exception traceback

-t, --test Produces no output

-V, --version Print the version and exit

-S, --station Create a StationXML file with no instrumentation

-0 OUTPUT, --output OUTPUT
Names the output file. Default is <input-filename-stem>.station.
—xml

14 Chapter 3. Command-line tools

obsinfo, Release 0.110

3.3 obsinfo-validate

This executable will validate the specified file:

$ obsinfo-validate [options] filename

obsinfo-validate will identify the type of file from the filename and run the relevant validation.

Option -r works as in obsinfo-makeStationXML. The rest of the options are self-explanatory:

$ obsinfo-validate -h
usage: obsinfo-validate [-h] [-q] [-r] [-d] input_filename

positional arguments:
input_filename Information file to be validated.

optional arguments:

-h, --help show this help message and exit
-q, --quiet Quiet operation. Don't print informative messages
-r, --remote Search input_filename in the DATAPATH repositories
-d, --debug Print traceback for exceptions

As mentioned in Best Practices, it is always a good idea to validate files before trying to create a StationXML file. Use
a bottom-up approach to avoid getting difficult-to-read error messages: start with filters, then stages, then components,
then instrumentations, then networks.

All files in official central repositories are assumed to have been validated.

3.4 obsinfo-print

This executable will print the obsinfo objects generated out of the specified file:

$ obsinfo-print [options] filename

obsinfo-print will identify the type of file from the filename and run the relevant printing routine. When used with the
-1 option, it will print up to a certain level specified after the option according to the keywords below. For example,
a sensor file with a stage level will not print the filter information, and a network file with a station level will not
print the instrumentation information and down.

usage: obsinfo-print [-d] [-h] [-1 LEVEL] input_filename

positional arguments:
input_filename Information file to be validated.

optional arguments:
-1 or --level: prints up to LEVEL, where LEVEL is:

all
stage
component
instrumentation
channel
station

(continues on next page)

3.3. obsinfo-validate 15

obsinfo, Release 0.110

(continued from previous page)

network
-d or --debug: do not catch exceptions to show error trace.
-h or --help: prints this message

16 Chapter 3. Command-line tools

CHAPTER
FOUR

TUTORIAL

4.1 Introduction

Information files are written in YAML or JSON, mostly YAML. YAML is a markup language (despite some claim its
acronym means “yaml ain’t a markup language” that permits users to encode data in a structured format which can be
shared, written and read by many applications using text files (rather than binary ones), a process known as serialization
of data. It is one of the standard tools for this purpose, others being JSON and XML, which tend to be more verbose
and harder to read and write. This tutorial will center on YAML, but it is readily translatable to JSON for users fluent
in the use of that markup language, which can, at any rate, be learned here. Keep in mind YAML is a superset of JSON,
so some functionality is not readily implemented in the latter.

This is not a YAML tutorial. We freely mix required YAML syntax with best practices advocated for obsinfo and
leave out many aspects of the language. For people wanting to get acquainted with YAML, a number of resources are
available, such as this.

4.1.1 Basic YAML syntax

YAML files, as in the other markup languages mentioned, are structured hierarchically. The basic structure is the
key-value pair, which permits to assign a value retrievable by key (and easily readable by a human user), such as:

last_name : "Presley"
first_name : "Elvis"

Being hierarchical, these key-value pairs can be nested:

artist_name:
last_name : "Presley"
first_name : "Elvis"

Space indentation is used in YAML to nest key-value pairs. NEVER use tabs. As a convention, two spaces are used
and all key-value pairs at the same level must be equally indented.

YAML uses three dashes “—" to separate different streams of data. Always put as the first line in your file the three
dashes as a best practice. All YAML files such have a .yaml extension.

17

https://www.w3schools.com/js/js_json_intro.asp
https://www.tutorialspoint.com/yaml/index.htm

obsinfo, Release 0.110

4.1.2 YAML data types

There are other observations for the little piece of code above. First, the data types. Scalars can be either a number, a
boolean (True or False as values) or a string, enclosed in double quotes. Numbers can be integers (without decimal
point) or floating point (with decimal point).

Other data structures include lists and dictionaries. A list is simply an enumeration of elements which can be any data
type, enclosed in brackets or listed in separate indented lines which start by dashes. The following are equivalent:

die_toss: [1,2,3,4,5,6]

die_toss:

1
2
3
- 4
5
6

Dictionaries are a collection of key-value pairs. They can either be indented, as above (last_name: “Presley” and
first_name: “Elvis” are actually elements of a dictionary value associated with the key artist_name) or as enu-
merations enclosed in curly brackets, or, again, as dashes. As a side note, the curly brackets syntax makes YAML
compatible with JSON. The following are equivalent:

artist_name:

last_name : "Presley"
first_name : "Elvis"
artist_name: { last_name : "Presley", first_name : "Elvis"}

artist_name:
- last_name : "Presley”
- first_name : "Elvis"

4.1.3 YAML variables

YAML is case sensitive. In obsinfo we only use keys in lower case with words separated by underscores.

4.1.4 Code reuse

The $ref special variable, a JSON feature, is used in obsinfo to allow the inclusion of the content of another file in the
current YAML file:

revision:
date: "2018-06-01"
authors:
- $ref: "Wayne_Crawford.author.yaml#author"

In this example, only the part corresponding to the key author will be included. Note that a file can be totally included
by omitting the #author anchor. $ref references will totally override all other keys at their level. For example, if we
had another field at the authors level:

18 Chapter 4. Tutorial

obsinfo, Release 0.110

revision:
date: "2018-06-01"
authors:
- $ref: "Alfred_Wegener.author.yaml#author"
email: Alfred_Wegenerd@yahoo.de

the email field will disappear in the final result. Contrast this with YAML anchors, to be discussed next.

4.1.5 YAML anchors

YAML anchors are used to avoid repetition, according to the DRY (“don’t repeat yourself”) principle. In this real
obsinfo example, an anchor is defined which has the value of a dictionary:

yaml_anchors:
obs_clock_correction_linear_defaults: &LINEAR_CLOCK_DEFAULTS
time_base: "Seascan MCXO, ~le-8 nominal drift"
reference: "GPS"
start_sync_instrument: 0

Further down the information file the following appears in several places wiwth different values for the
start_sync_reference, end_sync_reference and end_sync_instrument keys:

processing:
- clock_correction_linear_drift:
<<: *LINEAR_CLOCK_DEFAULTS
start_sync_reference: "2015-04-21T21:06:00Z"
end_sync_reference: "2016-05-28T20:59:00.32Z"
end_sync_instrument: "2016-05-28T20:59:03Z"

When an anchor is referenced with a star (¥) it’s called an alias and has the effect of replacing the alias by the anchor
definition. The effect will be:

processing:
- clock_correction_linear_drift:

time_base: "Seascan MCX0, ~le-8 nominal drift"
reference: "GPS"
start_sync_instrument: 0

start_sync_reference: "2015-04-21T21:06:00Z"

end_sync_reference: "2016-05-28T20:59:00.32Z"

end_sync_instrument: "2016-05-28T20:59:03Z"

Furthermore, the << label above indicates that this is a mapping. If no fields with the similar name appear under
the alias, its effect is to simply replace the alias by the anchor, as mentioned earlier. But if there are fields such as
time_base under the alias, like this:

- clock_correction_linear_drift:
<<: *LINEAR_CLOCK_DEFAULTS
time_base: "unavailable"

those fields will be overriden, so the effect of the latter piece of code is the following:

- clock_correction_linear_drift:
time_base: "Seascan MCX0, ~le-8 nominal drift"

(continues on next page)

4.1. Introduction 19

obsinfo, Release 0.110

(continued from previous page)

reference: "GPS"
start_sync_instrument: 0

overriding the value of time_base.
All this allows for code reuse without needing an external file as in $ref.

Next page, Information File Structure, discusses how to start creating obsinfo information files.

4.2 The general structure of information files

Information files are arranged in a hierarchy, with upper files referencing lower files. There are 5 main file types in
obsinfo:

Name Description Filled by When filled
subnetwork Deployed stations, their | scientist or OBS facility after a campaign
instruments and parame-
ters
instrumentation Instrument description OBS facility new/changed instruments
) Description of basic com- | OBS facility -or- compo- | when there are new are
instrument_components .
ponents nent manufacturer new components or cali-
sensors .
brations
components
dataloggers
stage Description of stages OBS facility -or- compo- | when there are new com-
digitizers, ampli- | nent manufacturer ponents or calibrations
fiers/filters)
filter Description of filters am- | OBS facility -or- compo- | when there are new com-
plifiers and digitizers used | nent manufacturer ponents or calibrations
in stages

The hierarchy is a best practice. In principle, all information contained in lower level files can be included in the
network file. However, it is highly recommended that the “$ref” functionality to refer to other files is used.

4.2.1 File Hierarchy

It is recommended to arrange the information files in a file hierarchy such as this:

..code-block:

/persons (contains files used in headers of other information files)

/network

/instrumentations

/sensors

/preamplifiers

/dataloggers

[instrumentation_componenent]/stages/

[instrumentation_componenent]/stages/filters (filters can be substituted by a specific.
~kind of filter: FIR, PZ, etc.)

20 Chapter 4. Tutorial

obsinfo, Release 0.110

where [instrumentation_componenent] = sensors, preamplifiers or dataloggers.

Another possibility is to arrange instrument components under instrumentation, but that may cause extra typing while
writing references ($ref)in information files. That would be something like this:

..code-block:: /instrumentations/sensors

The hierarchy is completely up to the user, including the names of the folders/directories. In fact, it is perfectly
possible to put all the information in a single file, although it is not recommended as reusability of filters, stages or
components depends on independent files.

To reference a file from within another file, use the JsonRef syntax:

authors: - {$ref: "persons/Wayne_Crawford.person.yaml#person"}

The effect of this directive is at the core of the philosophy of obsinfo, as it is this mechanism which allows reuse: it
substitutes the content of the key author within the file authors/Wayne_Crawford.author.yaml " as the value of the key
authors. If you want to include the complete file, remove the #author anchor.

How to express absolute and relative paths, and their meaning, are discussed later.

4.2.2 File Naming Convention

While there is flexibility about the folder hierarchy, information files must follow the following naming convention:
<descriptive file name>.<obsinfo file type>.<file format>
where

<descriptive file name> usually includes vendor and configuration shorthand to make the file easily iden-
tifiable by users,

<obsinfo file type> is one of campaign, network, instrumentation, sensor, preamplifier,
datalogger, stage, filter

<file format> is one of yaml or json.
Examples:
e TI_ADS1281_FIR1.stage.yaml is a stage with a Texas Instruments FIR filter nested in it, in YAML format.

* BBOBS.INSU-IPGP.subnetwork. json is a network of broad-band stations deployed by INSU IPGP, in JSON
format.

There are two resources, other than this tutorial, to look up the exact syntax for each information file. The different
pages have a complete explanation of all the attributes in the class. Unless otherwise noted, YAML keys or labels (also
called fields or sections) in the file have the same exact name (case sensitive) as the attributes in the class. The other
resource is the formal syntax of the file, which is a JSON schema, which is always referenced in the Class page.

4.2.3 File Metadata

All information files contain or may contain common metadata. format_version and revision are required.

e format_version: - This is a required field. It reflects the template version against which this file must be
validated

* revision: - Revision information (date in particular) to keep change control of file.
— date: - date of revision

— authors: - authors of revision, usually a reference to an author file

4.2. The general structure of information files 21

http://jsonref.org

obsinfo, Release 0.110

* notes: - Optional extra information which will not be put in final metadata.

e yaml_anchors: - YAML anchors to avoid redundancy, for advanced YAML users. Here is a guide on how to
use YAML anchors.

* Next page: Building a simple network file
* Previous page

e Back to start

4.3 A simple subnetwork file

4.3.1 Fundamentals of an information file

Under the folder which will contain all your information files, create a folder called network. Network information
files can be part of or referenced by a campaign information file, but since we are not dealing with campaigns in obsinfo
we will start with a network file.

Use your favourite text editor to create a network information file. Select as filename something meaningful, for exam-
ple, single period OBS from INSU-IPGP would be SPOBS.INSU-IPGP. Then add the type of information file, network
and the type of format, yaml:

SPOBS . INSU-IPGP. subnetwork.yaml

The file should start with the three dashes; the next line must specify the obsinfo version (required to know how to
process the file). There are several optional fields which we will omit in this first exercise. It’s a good idea, though, to
include a revision with a date and an author.

format_version: "0.111"
revision:
authors:

- names: ["Wayne Crawford"]
agencies: ["IPGP", "CNRS"]
emails: ["crawford@ipgp.fr"]
phones: ["+33 01 83 95 76 63"]

date: "2017-10-04"

Note the dash in a lonely line which indicates authors is a list. Alternatively, since the author is probably an informa-
tion that will be repeated several times, this information can be stored in another file. Let’s say we create a folder named
persons at the same level as network and then create a file inside that folder named Wayne_Crawford.person.yaml.
We put the three fields previously under the authors key in that file, so the file will look like:

format_version: "0.111"

person:
names: ["Wayne Crawford"]
agencies: ["IPGP", "CNRS"]
emails: ["crawford@ipgp.fr"]
phones: ["+33 01 83 95 76 63"]

And then we reference the file with a $ref field in the original network file:

22 Chapter 4. Tutorial

https://medium.com/@kinghuang/docker-compose-anchors-aliases-extensions-a1e4105d70bd

obsinfo, Release 0.110

format_version: "0.110"
revision:
authors:
- $ref: 'persons/Wayne_Crawford.person.yaml'
date: "2017-10-04"

The effect of this, from the point of view of obsinfo, is to insert said part of the Wayne_Crawford.person.yaml file
instead of the $ref line. If you do this all of the contents will be inserted. This is undesirable as it will cause a syntax
error; the system expects to see the fields names, emails, agencies and phones, not the three dashes, the version,
etc. The solution is using an anchor or fragment, which will only insert the contents of the field referenced by the
anchor. In this case, the anchor should be the field person, and so the final syntax is the following:

format_version: "0.111"
revision:
authors:
- $ref: 'persons/Wayne_Crawford.person.yaml#person'
date: "2017-10-04"

File discovery

Finding the information files is one of the most important features in obsinfo. Notice that the pathnames in the examples
above are not absolute (i.e. they don’t start at the base of the filesystem). In regular POSIX practice it is assumed that
non-absolute paths are added to the directory where the application is executed (called the current working directory,
or cwd). To allow the user to store instrumentation files in one standard spot, obsinfo will try to discover the file in one
of several directories specified by the variable obsinfo_datapath, which is set by the obsinfo-setup application
and found in the configuration file ~/.obsinforc (~ is your home directory). This works much in the same way that
executables are found in Linux, MacOS or Windows using the variable PATH.

Whenever a file in a $ref is specified without an absolute path, obsinfo will sequentally look for the file in all the
directories specified in obsinfo_datapath. A special keyword, GITLAB, specifies a remote Gitlab repository. Here’s
an example:

obsinfo_datapath, as specified above, will always look in a local directory where the current examples are installed
(via pip or conda) and then, if not found, in the remote repository. This gives the user great flexibility, as (s)he can
override an existing remote information file with a local one, change the order of discovery, etc.

In the end, you will create your own information files in a directory selected by you. Then you will have to edit the
obsinfo_datapath variable to reflect the directory from which you want to access your information files.

It is possible, although not recommended, to use absolute paths.

Use of slashes (/) instead of Windows backslashes () is recommended for uniformity, so a file can be used on different
operation systems. However, if you use backslashes, obsinfo will understand them.

4.3. A simple subnetwork file 23

obsinfo, Release 0.110

4.3.2 subnetwork

The next field key, subnetwork, starts the actual information. You may specify several sub-elements which are listed
in subnetwork, but let’s stick to the fundamentals:

subnetwork:

network:
code: "4G" # Either an FDSN provided network code or "XX" if no such code exists.
name: "Short period OBSs" # Use the FDSN name if applicable
start_date: "2007-07-01"
end_date: "2025-12-31"
description: "Short period OBS network example"
operators: [{$ref: "operators/EMSO-AZORES.operator.yaml#operator"}]

operators:
- {$ref: "operators/INSU-IPGP.operator.yaml#operator"}

The network section describes the network, of which the subnetwork is a subset.

If the network has been declared to FDSN, the information in network should correspond to the values on the FDSN
site. For information on how to request a network code or use a temporary code, see this link .

4.3.3 stations

Stations belonging to the network are specified next. They could, of coursem be put in a different file, but it is a best
practice to put the station information, so that one file contains all of the essential deployment information.

The following attribute is, therefore, stations. One can specify as many stations as you want, but in this example we
will only specify one. Stations are identified by a one to five character code. This code acts like a key, but be careful
to surround it by quotes: otherwise it will be flagged as an error by the JSON syntax validator. The start_date and
end_date should correspond to data start and end. The site is described as a text field, and a location code is specified
too. More on locations later.

stations:
"LSVW":
site: "Lucky Strike Volcano West"
start_date: "2015-04-22T12:00:00Z"
end_date: "2016-05-28T21:01:00Z"
location_code: "00"
instrumentation:

4.3.4 instrumentation

Stations must have an instrumentation, which specifies the entire data recording system, from the sensor(s) to the
datalogger. The best practice is to specify these in a separate file, as the same instrumentation (with different serial
numbers and possibly different configurations) may be used at several stations and/or for several experiments . The
way to reference an instrumentation is the following:

instrumentation:
base: {$ref: "instrumentation/SPOBS2.instrumentation.yaml#instrumentation"}
datalogger_configuration: "250 sps”

24 Chapter 4. Tutorial

http://docs.fdsn.org/projects/source-identifiers/en/v1.0/network-codes.html

obsinfo, Release 0.110

$ref is a different file in a folder called instrumentation. It is possible to specify several instrumentations in list
format:

instrumentations:
- $ref: "instrumentation/SPOBS2.instrumentation.yaml#instrumentation"
- $ref: "instrumentation/BBOBS1_2012+.instrumentation.yaml#instrumentation"

Instrumentations can be configured in several ways. One almost always provides a datalogger_configuration, to
specify the sample rate and possibly digital filters and/or gains. Here is an example using all the possible keys:

instrumentation:
base: {$ref: "instrumentation/SPOBS2.instrumentation.yaml#instrumentation"}
serial_number: "01"
configuration: "low power"
modifications:

channel_modifications:

The serial_number key lets you specify the instrumentation’s serial number The configuration key lets you select a
configuration that has been pre-defined for the instrumentation. The modifications and channel_modifications
keys let you modify individual elements within the instrumentation: we will discuss them later.

4.3.5 Locations

There must be at least one location in the file. This is the position in geographical coordinates of the station, usually
referred as location “00”. Locations are specified as follows:

locations:
"00":
base: {$ref: 'location_bases/INSU-IPGP.location_base.yaml#location_base'}
configuration: "ACOUSTIC_SURVEY"
position: {lon: -32.32504, lat: 37.29744, elev: -2030}

There is a base, which is again a referenced file in a different folder (as best practice). Again, there is a configuration,
which lets us chose which method was used to locate the station (a default value is chosen if configuration is not
provided).

Observe the difference between a list and a dictionary. List items are separated by dashes, dictionaries need a key/value
pair. authors is a list. locations is a dictionary.

However, there can be several locations. That’s the reason we have a location_code to specify the location corre-
sponding to the station itself. Other locations can be used if different channels have different positions or if two channels
have the same FDSN channel code, as will be seen shortly.

4.3. A simple subnetwork file 25

obsinfo, Release 0.110

4.3.6 Channel modifications

channel_modifications allow you to apply modifications to certain channels in the instrumentation. For example, a
change in an instrument_component configuration (more about this in the Next page, Building a simple instrumentation
file). Higher-level specifications take priority, so if channel_modifications are specified both in the subnetwork file
and in the instrumentation file, the one in the subnetwork file takes precedence.

Channel modifications are what makes obsinfo so flexible. We can specify several different configurations for the same
components, and then select one of them. We can also directly change other attributes in the instrumentation. This
allows components to be regarded almost as virtual descriptions which, when a particular configuration is selected, are
instantiated into a specific, actual component. Thus instrumentation files can be authentic libraries with little changes,
while the changes of configuration are specified for each station in a network in a specific campaign.

Furthermore, these libraries can reside in a central GitLab repository, which is updated by authorized users and, being
public, is available for reuse by all users. A user can even clone the repository in the regular GitLab way (see here) in
order to work offline with the latest version of the repository.

4.3.7 Complete example

You can skip this section in a first reading.

This is an actual subnetwork information file with the above information and some optional fields which we have not
yet described. Note the additions:

1) A second station

2) Use of yaml_anchors to avoid repeating information in the same file

3) Comments field in network

4) aprocessing field in a station. For more information on this, see Processing

— format_version: “0.111” revision:

authors:

{S$ref: “persons/Wayne_Crawford.person.yaml#person”}

date: “2019-12-19”

subnetwork:
network: $ref: “networks/EMSO-AZORES.network.yaml#network”
operators:
o {$ref: “operators/INSU-IPGP.operator.yaml#operator”}
stations:

“BB_1": site: “My favorite site” start_date: “2011-04-23T10:00:00” end_date: “2011-05-28T15:37:00”

location_code: “00” locations:

“00’: base: {$ref: ‘location_bases/INSU-IPGP.location_base.yaml#location_base’} config-
uration: “BUC_DROP” position: {lon: -32.234, lat: 37.2806, elev: -1950}

instrumentation: base: {$ref: “instrumentations/BBOBS1_pre2012.instrumentation_base.yaml#instrumentation_base
configuration: “SNO7” modifications:

datalogger: {configuration: “62.5sps”}

26

Chapter 4. Tutorial

https://docs.gitlab.com/ee/gitlab-basics/command-line-commands.html

obsinfo, Release 0.110

processing:

* clock_correction_linear: base: {$ref: “timing_bases/Seascan_GNSS.timing_base.yaml#timing_base”}

start_sync_reference: “2015-04-23T11:20:00” end_sync_reference: “2016-05-
27T14:00:00.2450” end_sync_instrument: “2016-05-27T14:00:00”

“BB_2": site: “My other favorite site” start_date: ‘“2015-04-23T10:00:00Z” end_date: “2016-05-
28T15:37:00Z” location_code: “00” notes: [“example of deploying with a different sphere’] instru-
mentation:

base: {S$ref: “instrumentations/BBOBS1_2012+.instrumentation_base.yaml#instrumentation_base”}

serial_number: “06” modifications:

datalogger: {configuration: “62.5sps”, equipment: {serial_number: “26”}} preampli-
fier: {equipment: {serial_number: “26”}}

channel_modifications: “1-": {sensor: {configuration: “Sphere08”}} “2-": {sensor: {con-
figuration: “Sphere08”}} “Z-": {sensor: {configuration: “Sphere08”}} “H-": {sensor:
{configuration: “5004”}}

locations:

“00: base: {S$ref: ‘location_bases/INSU-IPGP.location_base.yaml#location_base’} configura-
tion: “BUC_DROP” position: {lon: -32.29756, lat: 37.26049, elev: -1887}

processing:

* clock_correction_linear: base: {$ref: “timing_bases/Seascan_GNSS.timing_base.yaml#timing_base”}

start_sync_reference: “2015-04-22T12:24:00” end_sync_reference: “2016-05-
28T15:35:00.3660” end_sync_instrument: “2016-05-28T15:35:02”

In all obsinfo information files, you can add notes as a list of strings. Notes are not put into the StationXML file, they
only serve documentation purposes within the information file.

comments, on the other hand, comments are added to StationXML files, and can only be placed at levels which corre-
spond to the levels in a StationXML file with a Comment field.

extras are key:value pairs for information that you wish to document/process but do not correspond to existing obsinfo
elements. They are added as comments to the output StationXML file.

* Next page, Building a simple instrumentation file
* Previous page

e Back to start

4.4 Building a simple instrumentation file with channels

As seen in the last section, instrumentation are usually referred to with $ref from a network / station information file.
This is a best practice, but it is not mandatory. It does allow for easier reuse.

The file starts as usual:

format_version: "0.1101"
revision:
date: "2019-12-19"
authors:
- {$ref: "persons/Wayne_Crawford.person.yaml#person"}
- {$ref: "person/Romuald_Daniel.person.yaml#person"}

4.4. Building a simple instrumentation file with channels 27

obsinfo, Release 0.110

Observe that we have added an author to the list of authors, and that lists are separated by dashes.

4.4.1 Equipment

The main part of the file is the instrumentation section. First, we have the equipment section, which details the
manufacturer, model and serial number of the instrumentation.

instrumentation:

equipment:
model: "BBOBS1"
type: "Broadband Ocean Bottom Seismometer"
description: "LCHEAPO 2000 BBOBS 2012-present"
manufacturer: "Scripps Inst. Oceanography - INSU"
vendor: "Scripps Inst. Oceanography - UNSU"

As most OBS are assembled with parts from different manufacturers, the only required fields of the equipment section
are the type (a free-form text field) and the description.

4.4.2 channels and channel default

Next, we have channels. A channel is the combination of an instrument (sensor + optional preamplifier + datalogger)
and an orientation. Orientation codes are explained here in the Geographic orientation subsource codes section. They
are dictated by FDSN standards.

The channels are the actual channels in the instrumentation. They all have string labels, which are usually numbers
giving their sequence/code within the data acquistion system (not the FDSN channel name). These must be in quotes
as they are not keys in the obsinfo syntax.

To minimize duplication, a default channel declares common elements to all channels. This is not an actual channel,
it’s just a place to specify default attributes. If an attribute is not specified in an actual channel but exists in the default
channel then it will be added to the final configuration of the channel.

Let’s see an example:

channels:
default:
sensor: {base: {$ref: "sensors/NANOMETRICS_T240_SINGLESIDED.sensor.yaml#sensor"}}
preamplifier:

base: {$ref: "preamplifiers/LCHEAPO_BBOBS.preamplifier.yaml#preamplifier"}
datalogger: {base: {$ref: "dataloggers/LC2000.datalogger.yaml#datalogger"}}
"1": {orientation: {"2": {azimuth.deg: {value: 90}, dip.deg: {value: 0}}}}
o,
orientation:
s
azimuth.deg: {value: 0, uncertainty: 9}
dip.deg: {value: 0}

This code specifies two channels as a dictionary. Each channel specifies the two or three instrument components and
the orientation_code. The orientation key will become the third character in the SEED code identification (see
SeedCodes, and thus must follow FDSN standards.

Again, these are real, physical channels. default" specifies three instrument components: sensor, preamplifier
and datalogger These will be applied to all channels that do not specify these values themselves All three files

28 Chapter 4. Tutorial

http://docs.fdsn.org/projects/source-identifiers/en/v1.0/channel-codes.html#source-and-subsource-codes

obsinfo, Release 0.110

reference an information file in separate directory, which, in the example, are just under the DATAPATH directory. So
the above could also be typed:

channels:
nyn
sensor: {base: {$ref: "sensors/NANOMETRICS_T240_SINGLESIDED.sensor.yaml#sensor
<4,"}}
preamplifier: {base: {$ref: "preamplifiers/LCHEAPO_BBOBS.preamplifier.yaml
—#preamplifier"}}
datalogger: {base: {$ref: "dataloggers/LC2000.datalogger.yaml#datalogger"}}
orientation: {"2": {azimuth.deg: {value: 90}, dip.deg: {value: 0}}}
o,
sensor: {base: {$ref: "sensors/NANOMETRICS_T240_SINGLESIDED.sensor.yaml#sensor
~"}}
preamplifier: {base: {$ref: "preamplifiers/LCHEAPO_BBOBS.preamplifier.yaml
—#preamplifier"}}
datalogger: {base: {$ref: "dataloggers/LC2000.datalogger.yaml#datalogger"}}
orientation:
ny.
azimuth.deg: {value: 0, uncertainty: 9}
dip.deg: {value: 0}

Observe that in this case we have used curly parentheses to specify elements in a dictionary. They can be left out, letting
simple indentation do the job of determining the items.

If a channel specifies any field that is also in the default, it will override that field. Let’s assume we have a 4th channel
4 with a hydrophone:

Il4ll:

sensor: {base: {$ref: "sensors/SIO_DPG.sensor.yaml#sensor"}}

preamplifier: {base: {$ref: "preamplifiers/LCHEAPO_DPG.preamplifier.yaml#preamplifier
~"1}

orientation: {"H": {{azimuth.deg: {value: 0}, dip.deg: {value: 903}}}

Then, assuming the same default " field as above, the result of channel 4 would be:

g
sensor: {base: {$ref: "sensors/SIO_DPG.sensor.yaml#sensor"}}
preamplifier: {base: {$ref: "preamplifiers/LCHEAPO_DPG.preamplifier.yaml#preamplifier
~"1}
datalogger: {base: {$ref: "dataloggers/LC2000.datalogger.yaml#datalogger"}}
orientation: {"H": {azimuth.deg: [0, 0], dip.deg: [90, 0]}}

Only datalogger retaints the default value. The other components are overriden with the values specified in channel
4,

4.4. Building a simple instrumentation file with channels 29

obsinfo, Release 0.110

4.4.3 Orientation Codes

Orientation codes are a FDSN standard. By convention, if the orientation code is N, E or Z, these represent the regular
coordinates in space , within five degrees of the actual directions. So N corresponds to an azimuth of 0° and a dip of
0°, E corresponds to an azimuth of 90° and a dip of 0°, and Z corresponds to an azimuth of 0° and a dip of -90° (the
positive Z direction is upwards). However, if 1, 2 or 3 are specified, these represent three orthogonal directions but
not necessarily coincidental with the regular coordinates, so an azimuth and a dip must be specified, depending on the
type of code. The same is true of the H (hydrophone) code. See reference above for details.

Note also how we freely mix the two syntactic ways of specifying a dictionary in YAML, either with curly parentheses
or with indentation. You can use whatever syntax you prefer.

The order that you enter the keys sensor. preamplifier and datalogger is arbitrary, but their stages will always
be processed from input (physical) to the output (stored): that is, first sensor, then preamplifier, then datalogger. You
should specify stages within each of these instrument components in the same order, from top to bottom. For example,
a sensor with an internal amplifier should have the sensor as the top stage and the amplifier below. obsinfo will check
that the output_units of each stage match the input_units of the stage below.

4.4.4 Configurations

‘We have learned how to specify default components through the default and how to override them. This is pretty flexible,
but we can get more flexible still. This is done through configurations. Every element that specifies a base element
(instrumentation, location_base, instrument_components and stage) can also specify configurations that modify
this base element. configuration” definitions can take any field at the base level and either overriding it or add to
it. This is by selecting a configuration at the channel level. A configuration selection field can specify a configuration
for each of the three instrument components in a channel: sensor, preamplifier and datalogger. The configuration must
be defined. Below, we add two things to the previous example: a default preamplifier configuration and a channel 3
that overrides this configuration.

channels:
default:
sensor: {base: {$ref: "sensors/NANOMETRICS_T240_SINGLESIDED.sensor.yaml#sensor"}
—~}
preamplifier:
base: {$ref: "preamplifiers/LCHEAPO_BBOBS.preamplifier.yaml#preamplifier"}
configuration: "0.225x"
datalogger: {base: {$ref: "dataloggers/LC2000.datalogger.yaml#datalogger"}}
"1": {orientation: {"2": {azimuth.deg: {value: 90}, dip.deg: {value: 0}}}}

o,
orientation:
.
azimuth.deg: {value: 0, uncertainty: 9}
dip.deg: {value: 0}
ngn,
orientation: {"Z": {azimuth.deg: 0, dip.deg: -903}}
preamplifier: {configuration: "1x"}
Il4ll:

sensor: {base: {$ref: "sensors/SIO_DPG.sensor.yaml#sensor"}}

preamplifier: {base: {$ref: "preamplifiers/LCHEAPO_DPG.preamplifier.yaml
—#preamplifier"}}

orientation: {"H": {{azimuth.deg: {value: 0}, dip.deg: {value: 90}}}

This code specifies configurations, which can be for sensor, preamplifier or datalogger; in this case, simply for the
preamplifier. The configuration selected is called “0.225x” and is a gain multiplier, as will be seen shortly. This value

30 Chapter 4. Tutorial

obsinfo, Release 0.110

will be used in all channels, except channel 3, where it will be changed to “1x”. In the end, the four channels specified
above will be the same as typing this:

channels:
"1
sensor: {base: {$ref: "sensors/NANOMETRICS_T240_SINGLESIDED.sensor.yaml#sensor"}}
preamplifier:
base: {$ref: "preamplifiers/LCHEAPO_BBOBS.preamplifier.yaml#preamplifier"}
configuration: "0.225x"
datalogger: {base: {$ref: "dataloggers/LC2000.datalogger.yaml#datalogger"}}
orientation: {"2": {azimuth.deg: {value: 90}, dip.deg: {value: 0}}}

"2"
sensor: {base: {$ref: "sensors/NANOMETRICS_T240_SINGLESIDED.sensor.yaml#sensor"}}
preamplifier:
base: {$ref: "preamplifiers/LCHEAPO_BBOBS.preamplifier.yaml#preamplifier"}
configuration: "0.225x"
datalogger: {base: {$ref: "dataloggers/LC2000.datalogger.yaml#datalogger"}}
orientation:
"1
azimuth.deg: {value: 0, uncertainty: 9}
dip.deg: {value: 0}
"3":
sensor: {base: {$ref: "sensors/NANOMETRICS_T240_SINGLESIDED.sensor.yaml#sensor"}}
preamplifier:
base: {$ref: "preamplifiers/LCHEAPO_BBOBS.preamplifier.yaml#preamplifier"}
configuration: "1x"
datalogger: {base: {$ref: "dataloggers/LC2000.datalogger.yaml#datalogger"}}
orientation: {"Z": {azimuth.deg: 0, dip.deg: -90}}
"4"

sensor: {base: {$ref: "sensors/SIO_DPG.sensor.yaml#sensor"}}

preamplifier: {base: {$ref: "preamplifiers/LCHEAPO_DPG.preamplifier.yaml
—#preamplifier"}}

datalogger: {base: {$ref: "dataloggers/LC2000.datalogger.yaml#datalogger"}}

orientation_code: {"H": {azimuth.deg: [0, 0], dip.deg: [90, 0]}}

Channel modifications

As seen in the last chapter, channel configurations can also be modified. The rationale behind this feature is that the
user has a stable database of instruments which may occasionally undergo last-minute or one-time modifications, for
example, when a malfunctioning sensor is replaced by another. obsinfo is conceived to reflect this malleability. Channel
modifications are indicated at the station level but can potentially change any field from instrumentation level down.
This is a more complex topic that falls outside of this beginner’s tutorial. It will be treated in the Advanced Topics
documentation.

4.4. Building a simple instrumentation file with channels 31

obsinfo, Release 0.110

4.4.5 Notes and extras

This file is complex, so it’s a good place to talk about notes and extras. These are optional fields. Notes can occur
in any information file. They are documentation that can be used to remind users of the specifics of the information
file. They will not be put into the StationXML to avoid clutter.

Extras are key:value pairs that document attributes that do not exist in the information file specification. They are put
into StationXML comments. For this reason and to avoid clutter, they are only available at three levels: network, station
and channel.

As an example, let’s assume we have an “octopus” sensor where the serial number of the sensor is not specified. This
is because we have actually several sensors with different serial numbers, enclosed in spheres. How do we convey that
information? There are two ways. One is in a list of notes at the end of the sensor file:

notes:
- "INSU-IPGP OBS park sphere sensor pairs are: Sphere®1-133, Sphere02-132,"
- "Sphere03-134, Sphere®4-138, Sphere05-137, Sphere06-830, Sphere®07-136,"
- "Sphere08-829, Sphere09-826"

The other YAML syntax for lists is possible too:

notes: [“INSU-IPGP OBS park sphere sensor pairs are: Sphere01-133, Sphere02-132,”, “Sphere03-134,
Sphere04-138, Sphere05-137, Sphere06-830, Sphere07-136,”, “Sphere08-829, Sphere(09-826”]

This associates serial numbers to the spheres. However, this will not be reflected in the StationXML file. Alternatively,
we can use the extras dictionary, not in the sensor file but in the instrumentation one:

extras:
"Description": "Serial numbers for sensors"
"Sphere®3": "134"
"Sphere®4": "138"
"Sphere®5": "137"
"Sphere®6": "830"
"Sphere®7": "136"
"Sphere®8": "829"
"Sphere®9": "826"

Complete example

This is a real file. The order of the fields may be different than the examples above. As previoiusly mentioned, this is
immaterial.

— format_version: “0.111” revision:
authors:
o {$ref: “persons/Wayne_Crawford.person.yaml#person”}
date: “2019-12-19”
subnetwork:

operators:

32 Chapter 4. Tutorial

obsinfo, Release 0.110

o {$ref: “operators/INSU-IPGP.operator.yaml#operator”}
network: $ref: “networks/EMSO-AZORES.network.yaml#network”
stations:

“BB_1": site: “My favorite site” start_date: “2011-04-23T10:00:00” end_date: “2011-05-28T15:37:00”
location_code: “00” locations:

“00’: base: {$ref: ‘location_bases/INSU-IPGP.location_base.yaml#location_base’} config-
uration: “BUC_DROP” position: {lon: -32.234, lat: 37.2806, elev: -1950}

instrumentation: base: {$ref: “instrumentations/BBOBS1_pre2012.instrumentation_base.yaml#instrumentation_base
configuration: “SNO7” modifications:

datalogger: {configuration: “62.5sps”}
processing:

* clock_correction_linear: base: {S$ref: “timing_bases/Seascan_GNSS.timing_base.yaml#timing_base”}
start_sync_reference: “2015-04-23T11:20:00” end_sync_reference: “2016-05-
27T14:00:00.2450” end_sync_instrument: “2016-05-27T14:00:00”

“BB_2": site: “My other favorite site” start_date: “2015-04-23T10:00:00Z” end_date: “2016-05-
28T15:37:00Z” location_code: “00” notes: [“example of deploying with a different sphere™] instru-
mentation:

base: {S$ref: “instrumentations/BBOBS1_2012+.instrumentation_base.yaml#instrumentation_base’}
serial_number: “06” modifications:

datalogger: {configuration: “62.5sps”, equipment: {serial number: “26”}} preampli-
fier: {equipment: {serial_number: “26”}}

channel_modifications: “1-": {sensor: {configuration: “Sphere08”}} “2-": {sensor: {con-
figuration: “Sphere08”}} “Z-": {sensor: {configuration: “Sphere08”}} “H-": {sensor:
{configuration: “5004}}

locations:

“00”: base: {$ref: ‘location_bases/INSU-IPGP.location_base.yaml#location_base’} configura-
tion: “BUC_DROP” position: {lon: -32.29756, lat: 37.26049, elev: -1887}

processing:

¢ clock_correction_linear: base: {$ref: “timing_bases/Seascan_GNSS.timing_base.yaml#timing_base”}
start_sync_reference: “2015-04-22T12:24:00” end_sync_reference: “2016-05-
28T15:35:00.3660” end_sync_instrument: “2016-05-28T15:35:02”

* Next page, Building instrument component files
* Previous page

e Back to start

4.4. Building a simple instrumentation file with channels 33

obsinfo, Release 0.110

4.5 Building instrument component files with response stages: sen-
sors and preamplifiers

Sensor, preamplifier and datalogger are all instrument components. While InstrumentComponent is not a key in infor-
mation files, it is a class in Python used to inherit attributes and methods to all three component classes. All instrument
components share the same attributes and sensor and datalogger add one each on their own. Components in an instru-
ment are always understood to come in the same order, and are processed in that order: first the sensor, then possibly
a preamplifier, usually analog, and then the datalogger.

What characterizes all components is that they have an ordered list of response stages. While the order of the compo-
nents themselves is predetermined, the order of the stages must be specified. The order of all stages is then determined
as sensor stage 1, sensor state 2,..., preamplifier stage 1, preamplifier stage 2,..., datalogger stage 1, datalogger stage
2,...

4.5.1 A simple sensor component

A sensor is, as it is well-known, any kind of transducer that senses a seismic signal and transduces it to an electrical
signal, typically an analog one.

Let’s see an example of a sensor component.

format_version: "0.110"

revision:
date: "2017-11-30"
authors:
- {$ref: "authors/Wayne_Crawford.author.yaml#author"}?}
sensor:
equipment:

model: "Trillium T240"

type: "Broadband seismometer"

description: "Trillium T240 seismometer, single-sided connection"
manufacturer: "Nanometrics, Inc"

vendor: "Nanometrics, Inc"

We have an equipment section, just as the instrumentation level, as sensors can have different manufacturers from the
rest of the equipment. The description allows to add enough detail so we can identify this sensor. Then we have the
seed codes section. Seed codes are coded descriptions of such elements as the band base, the instrument type and the
orientation. The codes of the first two follow the FDSN standard, as explained here .

seed_codes:
band_base: "B"
instrument: "H"

Seed codes are only present in sensors. No other component has them. Seed codes are based on an FDSN standard and
consist of three characters. The first specifies the band_base, the second the instrument type. A third one, orientation,
with azimuth and dip, is specified at the channel level, although in the StationXML file it will part of the seed code.

(3R]

The value of polarity should be “+” if an upward motion or a pressure increase results in a positive voltage, and
otherwise.

34 Chapter 4. Tutorial

http://docs.fdsn.org/projects/source-identifiers/en/v1.0/channel-codes.html

obsinfo, Release 0.110

4.5.2 Stages

Now, let’s take a look at the next section, response stages. As is readily seen in the example, stages are a list of stages.
Being a list, individual stages have no label or key, which would make them dictionary items rather than list items.
As they are (usually) not referenced elsewhere (the glaring exception being channel modifications), this simplifies the
syntax. In this case, we only include a single stage, as a reference to a stage file, which is the recommended best
practice. Stages are found in a stage folder.

stages
- $ref: "stages/Trillium_T240_SN1-399-singlesided_theoretical.stage.yaml#stage"

Response stages are used in all three components. While StationXML lists all stages separately from the components,
obsinfo associates conceptually stages to components by way of their functionality. In the end, however, stages will be
grouped together and numbered from the sensor stages to the datalogger ones, all in sequence.

This ends the presentation of a simple sensor file. But the important part of components, their flexibility, lies ahead.

4.5.3 Configuration definitions

This is the place where the full power of obsinfo manifests itself. The application allows several configuration definitions
to coexist in any component file. This means that we can have a virtual sensor or datalogger which can potentially have
any number of configurations, so we can form a library of component files. Only when they are added to an instrument
(or, if you like to think it that way, to a channel), will one particular configuration be “instantiated” and a real component
will be described by the file. This occurs with the field configuration_selections in the instrumentation file. That
value selects one configuration among all the configuration definitions. But we also allow a default configuration, so if
no configuration is selected at the channel level, this will be the actual configuration selected. Let’s modify our simple
sensor file adding configurations:

format_version: "0.110"

revision:
date: "2017-11-30"
authors:
- {$ref: "authors/Wayne_Crawford.author.yaml#author"}
sensor:
equipment:

model: "Trillium T240"

type: "Broadband seismometer"

description: "Trillium T240 seismometer, negative shorted to ground"
manufacturer: "Nanometrics, Inc"

vendor: "Nanometrics, Inc"

seed_codes:
band_base: "B"
instrument: "H"

configuration_default: "SINGLE-SIDED_SN1-399"

configuration_definitions:
"SINGLE-SIDED_SN1-399"
configuration_description: "serial numbers 1-399"
stages:
-$ref: "responses/Trillium_T240_SN1-399-singlesided_theoretical.stage.yaml

#stage" i
(continues on next page)

4.5. Building instrument component files with response stages: sensors and preamplifiers 35

obsinfo, Release 0.110

(continued from previous page)

"SINGLE-SIDED_SN400plus"
configuration_description: "serial numbers 400+"
stages:
-$ref: "responses/Trillium_T240_SN400-singlesided_theoretical.stage.yaml
—#stage"

This file requires a lot of commentary. Let’s start with the resulting configuration. Note that we have added two config-
uration definitions, which are specified as a dictionary (i.e. they have labels, key/value pairs),”SINGLE-SIDED_SN1-
399” and “SINGLE-SIDED_SN400plus”. This is a real example in which a component has different behaviour de-
pending on its serial number (below or above 400), which calls for two differently configured stages. If no sensor
configuration is selected in the instrumentation file, the result would be to use the default configuration, so the file
above would be the same as this:

format_version: "0.110"
revision:
date: "2017-11-30"
authors:
- {$ref: "authors/Wayne_Crawford.author.yaml#author"}

sensor:
equipment:
model: "Trillium T240"
type: "Broadband seismometer"
description: "Trillium T240 seismometer, negative shorted to ground [config:.
—serial numbers 1-399]"
manufacturer: "Nanometrics, Inc"
vendor: "Nanometrics, Inc"

seed_codes:
band_base: "B"
instrument: "H"

stages:
-$ref: "responses/Trillium_T240_SN1-399-singlesided_theoretical.stage.yaml#stage"

stages is added from the default configuration definition. No surprises here. But look at what happened in
description. We didn’t override the existing description, we concatenated the new one to the old one. This is
an exception to the way all other fields behave. The idea is to be more specific about the description according to the
configuration. This could possibly be achieved with YAML anchors, but unfortunately YAML does not concatenate
strings, so we need to do it this way, with an exception to the general overriding rule.

Now, if we had selected configuration “SINGLE-SIDED_SN400plus” in the instrumentation file (in the
config_selections section), the result would be:

format_version: "0.110"
revision:
date: "2017-11-30"
authors:
- {$ref: "authors/Wayne_Crawford.author.yaml#author"}?}

Sensor:

(continues on next page)

36 Chapter 4. Tutorial

obsinfo, Release 0.110

(continued from previous page)

equipment:
model: "Trillium T240"
type: "Broadband seismometer"
description: "Trillium T240 seismometer, negative shorted to ground [config:.
—serial numbers 400+]"
manufacturer: "Nanometrics, Inc
vendor: "Nanometrics, Inc"

seed_codes:
band_base: "B"
instrument: "H"

stages:
- $ref: "responses/Trillium_T240_SN400-singlesided_theoretical.stage.yaml#stage"

At any rate, the philosophy is to have all these configurations added to the component file from the start, so we don’t
change the file much; but, of course, if needs be, you can add more configurations anytime.

4.5.4 Complete example sensor file

format_version: "0.110"

revision:
date: "2017-11-30"
authors:
- {$ref: "authors/Wayne_Crawford.author.yaml#author"}
sensor:
equipment:

model: "Trillium T240"

type: "Broadband seismometer"

description: "Trillium T240 seismometer, negative shorted to ground"
manufacturer: "Nanometrics, Inc"

vendor: "Nanometrics, Inc"

seed_codes:
band_base: "B"
instrument: "H"

configuration_default: "SINGLE-SIDED_SN1-399"

configuration_definitions:
"SINGLE-SIDED_SN1-399"
configuration_description: "serial numbers 1-399"
stages:
-$ref: "responses/Trillium_T240_SN1-399-singlesided_theoretical.stage.yaml
w#stage"
"SINGLE-SIDED_SN400plus"
configuration_description: "serial numbers 400+"
stages:
-$ref: "responses/Trillium_T240_SN400-singlesided_theoretical.stage.yaml
w#stage"

(continues on next page)

4.5. Building instrument component files with response stages: sensors and preamplifiers 37

obsinfo, Release 0.110

(continued from previous page)

notes:
- "INSU-IPGP OBS park sphere sensor pairs are: Sphere®1-133, Sphere02-132,"
- "Sphere03-134, Sphere04-138, Sphere®5-137, Sphere®6-830, Sphere®7-136,"
- "Sphere08-829, Sphere09-826"

4.5.5 Preamplifier configuration definitions

Preamplifiers are, in fact, the simplest components. They only have equipment, stages, configuration_default
and configuration_definitions, already explained above. Thus, we limit ourselves to showing an example, noting
the the configuration definitions are based on gain, not serial number as in the sensor example before. Remember that
labels for configuration definitions are totally arbitrary, so you can make your own choice as to how to characterize the
configurations.

format_version: "0.110"

revision:
date: "2017-11-30"
authors:
- $ref: "authors/Wayne_Crawford.author.yaml#author"
preamplifier:
equipment:

model: "BBOBS-GAIN"

type: "Analog gain card"
description: "INSU BBOBS gain card"
manufacturer: "SIO or IPGP"

vendor: ~

configuration_default: "1x"

configuration_definitions:

"0.225x":
configuration_description: "0.225x gain"
stages:
- $ref: "responses/INSU_BBOBS_gain®.225_theoretical.stage.yaml#stage"
"1x":
configuration_description: "1x gain"
stages:

- $ref: "responses/INSU_BBOBS_gainl.®_theoretical.stage.yaml#stage"

In the next section we will see how to configure a datalogger information file.
* Next page, Building a datalogger information file
* Previous page

e Back to start

38 Chapter 4. Tutorial

obsinfo, Release 0.110

4.6 Building a datalogger information file

Dataloggers are the components used to record the data treated by the instrument stages before. Their configuration
files might get quite complex due to the number of necessary stages.

Dataloggers have the same common fields of any other instrument component, with two extra fields: correction and
sample_rate, which is the overall sample rate of the complete instrument.

correction

All stages can have nominal delays, but these delays sometimes need to be corrected. The correction field ac-
complishes this. In StationXML correction is an attribute of each stage. However, as most delays come from the
datalogger’s digital filters, where they are in samples which can only be converted to time once the stages sampling
rates are known, obsinfo requires you to specify the correction at the datalogger level. Two processes are allowed:

1. Set the correction equal to the delay in every stage. This is the most common case used by commercial dataloggers
but it seems false if the datalogger doesn’t REALLY correct time at every stage.

2. Set the correction equal to zero in all stages but the last, where the correction is set equal to a value provided by
the user. This corresponds to what most non-commercial dataloggers do.

The first case is activated by NOT specifying the correction in the datalogger information file. In other words,
obsinfo assumes by default a “perfect” delay correction. Note that this will also be applied to the non-datalogger
stages, which should probably be changed (either have a separate correction field for each instrument_component, or
specify correction at the channel level)

The second case is activated by specifying a correction in the datalogger information file. Note that, if your
datalogger does not correct for the digital delay, specifying correction: 0 does the right thing, which is to set
correction=0 in each stage.”

4.6.1 Datalogger configuration definitions

The following paragraph requires the reader to have a minimal knowledge of signal treatment.

The code below is a real datalogger configuration file. We see that this example has several response stages in each
configuration, based this time on the sample rate. This is due to the fact that each stage with the FIR2 amd FIR3 filters
has a decimation factor of 2: each one divides the sample rate by two. FIR1 is actually an ADC, an analog to digital
converter, all previous stages in this instrument being analog, in particular the one in the previous component, the
preamplifier. FIR1 outputs a 32000 sps sample rate. Thus, to get to a final 1000 sps sample rate we need four FIR2 and
one FIR3, each halving the sample rate. FIR2 and FIR3 have different coefficients and thus both are necessary. This
means we need at least one FIR1, one FIR2 and one FIR3. To keep halving the sample rate we simply add more FIR2.
So it’s simple now to see now the difference in configurations: it’s simply adding an extra FIR2 each time.

format_version: "0.110"

revision:
date: "2019-12-20"
authors:
- $ref: 'authors/Wayne_Crawford.author.yaml#author'
notes:

- "Delay correction is hard-coded to 29 samples in LCHEAPO software"

datalogger:
equipment:
model: "CS5321/22"
type: "delta-sigma A/D converter + digital filter"

(continues on next page)

4.6. Building a datalogger information file 39

obsinfo, Release 0.110

(continued from previous page)

configuration_default: "125 sps'

description: "CS5321/22 delta-sigma A/D converter + FIR digital filter"

n

manufacturer: "Cirrus Logic
vendor: "various"

configuration_definitions:

"62.5sps":
sample_rate: 62.5
correction: 0.464
stages:
- $ref: "responses/CS5321_FIRI.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR3.
"125sps":
sample_rate: 125
correction: 0.232
stages:
- $ref: "responses/CS5321_FIR1.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR3.
"250sps":
sample_rate: 250
correction: 0.116
stages:
- $ref: "responses/CS5321_FIRI.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR3.
"500sps":
sample_rate: 500
correction: 0.058
stages:
- $ref: "responses/CS5321_FIRI.
- $ref: "responses/CS5322_FIR2.

stage.
stage.
stage.
stage.
stage.
stage.
stage.
stage.
stage.
stage.

stage.
stage.
stage.
stage.
stage.
stage.
stage.
stage.
stage.

stage.
stage.
stage.
stage.
stage.
stage.
stage.
stage.

stage.
stage.

yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"

yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"

yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"
yaml#stage"

yaml#stage"
yaml#stage"

(continues on next page)

Chapter 4. Tutorial

obsinfo, Release 0.110

(continued from previous page)

- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR3.stage.yaml#stage"
"1000sps":

sample_rate: 1000

correction: 0.029

stages:
- $ref: "responses/CS5321_FIR1.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR3.stage.yaml#stage"

As can be seen, configuration definition labels are flexible and can suit any purpose imagined by the user. The best
practice is to keep them short, explicit and consistent among different selectable configurations in the same group.

Next we will see stages and filters in more detail.
* Next page, Building stage information files
* Previous page

e Back to start

4.7 Building a stage information file with different filters

Conceptually, stages are each of an electronic block diagram “boxes”. They are usually implemented as a single printed
circuit connected to the instrument bus. An instrument component has an ordered list of stages. Each stage has certain
signal treatment characteristics.

It is important to note that, since stages are chained,
* Qutput units of stage and input units of the next stage must match.
* In digital stages, the output sample rate of one stage must match the input sample rate of the next one.
* Declared sample rate of the instrument as a whole must match calculated sample rate of the response ensemble.

To allow flexible use of stages, as exemplified in the datalogger information file above, it is a good idea not to specificy
input sample rates (output sample rates cannot be specified, see below) for all but the first stage. For example, the FIR2
stages in the datalogger example above only specify decimation factor. This means that, irrespective of input sample
rate, the will have the output sample rate specified by the decimation factor.

Both conditions are checked by obsinfo.

In the current implementation, all stages have one, and exactly one filter associated. This may seem a little strange,
as some stages are not properly filters, but rather analog and digital amplifiers (they only increment gain) or ADCs,
analog-digital converters. This is idiosyncratic. It seems StationXML does not allow stages that are not some sort of
filter. Therefore, as will be seen, these stages are implemented as filters in obsinfo.

Let’s profit from this to see what a stage with a very simple “filter” in the above sense looks like. This is a stage for a
preamplifier. It is analog and only has a gain. with no other processing. We have a specification of input and output
units and a gain, composed of a value and a frequency where that gain value is measured. It has an associated “filter” of
type ANALOG. All these are required fields. We also have an optional description, which is nonetheless recommended.

4.7. Building a stage information file with different filters 41

obsinfo, Release 0.110

format_version: "0.110"

stage:
description : "PREAMPLIFIER: BBOBS 0.225x"
input_units : {name: "V", description: "VOLTS"}
output_units : {name: "V", description: "VOLTS"}
gain : {value : 0.225, frequency: 0}
filter :

type : "ANALOG"

polarity: "+

Next we can see another pseudo-filter, an analog to digital converter used as the first stage of a datalogger:

format_version: "0.110"

revision:
date: "2017-11-30"
authors:
- $ref: "authors/Wayne_Crawford.author.yaml#author"
notes:

- "From CS5321-22_F3.pdf"

stage:
description : "DIGITIZER - CS5321 Delta-Sigma A/D converter" # optional
input_units : { name : "V", description: "Volts"}
output_units : { name : "counts", description: "Digital Counts"}

input_sample_rate : 256000
decimation_factor : 8
gain :
frequency: 0
value: 1165084 # counts/V
filter:
type : "AD_CONVERSION"
input_full_scale : 9 # 9 V pp
output_full_scale : 10485760 # 4FFFFF@Vref and BOOO0OO@-Vref

Although it is obvious that the input is analog, we specify an input_sample_rate in agreement with StationXML
specifications. The output rate, as mentioned above, is never specified, but can easily be obtained from this and the
decimation_factor by division. In the example, the output sample rate will be 32000 sps. For the time being, we
will ignore the other fields in filter, which will be discussed in the next section.

Note the use of the notes attribute, which will not be processed as comments in StationXML. Other optional attributes
don’t appear here to keep the discussion simple but can be readily consulted in the corresponding Stage. However, there
are three attributes that should be noticed.

42 Chapter 4. Tutorial

obsinfo, Release 0.110

4.7.1 delay, offset and correction attributes

Digital filters can have an offset, which specifies how samples the peak of an impulse will be offset by the filter. This
is specified at the filter level.

The stage level has an attribute called delay. If delay is not specified but offset is in the associated filter, delay
is calculated by dividing offset by the input sample rate. If both delay and “offset " are specified, their specified
values are kept untouched.

correction is an attribute in StationXML which is calculated, as mentioned in the previous section, using the data-
logger field correction. It should not be specified by the user.

We see in this example a stage without input_sample_rate but with decimation_rate of 2, which divide the
output_sample_rate of the previous stage by 2, as mentioned in the introduction to this section. This is precisely
the stage FIR3 that was used in the previous page as a datalogger stage example. The other thing worth noting is the
reference to a filter file in the folder filters/.

format_version: "0.110"
revision:
date: "2017-11-30"
authors:
- $ref: "authors/Wayne_Crawford.author.yaml#author"

notes: ["From CS5322_Filter.pdf"]

stage:
decimation_factor : 2
gain : {value: 1, frequency: 0}
input_units : { name : "counts", description: "Digital Counts"}
offset: 50

description : "DECIMATION - CS5322 FIR3 (linear phase)"
filter:

$ref: "filters/CirrusLogic_CS5322_FIR3.filter.yaml#filter"
extras:

DBIRD_response_type : "THEORETICAL"

4.7.2 Polarity

TR

Each stage can have a polarity: if omitted it is assumed to be “+”. A “+” polarity means:
* For a seismometer, a postitive voltage corresponds to a movement UP.
* For a hydrophone, a positive voltage corresponds to an INCREASE in pressure
* For a non-sensor stage, the passband output has the SAME polarity as the input in the passband
A “-” polarity means:
« For a seismometer, a postitive voltage corresponds to a movement DOWN.
* For a hydrophone, a positive voltage corresponds to a DECREASE in pressure
* For a non-sensor stage, the passband output has the OPPOSITE polarity as the input in the passband

By multiplying the polarities in a channel’s stages we get the channel’s polarity. For seismometer and hydrophone
channels, a positive polarity corresponds to dip = -90° and a negative polarity to dip = 90°

4.7. Building a stage information file with different filters 43

obsinfo, Release 0.110

* Next page, Building a filter information file
* Previous page

e Back to start

4.8 Building a filter information file for different filters

As pointed out in the last section, all stages have an associated filter, even if we can’t properly call it a filter, due to the
ideosyncretic behavior of StationXML. Some of the normal filters are familiar:

* PolesZeros - Any kind of digital filter specified by its poles and its zeros. Use this for Laplace transforms and
IIR filters.

* FIR - Finite Input Response digital filter

* Coefficients - A FIR expressed with coefficients of transfer function

* ResponseList - A digital filter with all responses expressed as frequency, amplitude and phase.
Others are not properly filters:

* ADConversion - Analog to digital conversion stage

* Analog - gain only analog stage-

* Digital gain only digital stage

For more details on each one go to their corresponding Class pages. Here are some examples on how to express different
filters (for examples of Analog and ADConversion, see last section).

All filters have a type, which is specified in the list above, and digital ones have an offset, which is the number of
pulses to be skipped at the start of the signal input. offset is used to calculate delay, as explained in the last section.

4.8.1 PolesZeros

A PolesZeros digital filter (as defined in the field type) specifies a transfer function type, a normalization factor and
frequency, and the respective poles and zeros:

format_version: "0.110"

revision:
date: "2017-11-30"
authors:
- $ref: "authors/Wayne_Crawford.author.yaml#author"
filter:

type: "PolesZeros"

transfer_function_type: "LAPLACE (RADIANS/SECOND)"
normalization_factor : 1

normalization_frequency : 0

Zeros :
- [0.0, 0.0]
- [0.0, 0.0]
- [-72.5, 0.0]
- [-159.3, 0.0]
- [-251, 0.0]

(continues on next page)

44 Chapter 4. Tutorial

obsinfo, Release 0.110

(continued from previous page)

- [-3270.0, 0.0]

poles :
- [-0.017699, 0.017604]
- [-0.017699, -0.017604]
- [-85.3, 0.0]
- [-155.4, 210.8]
- [-155.4, -210.8]
- [-713, 0]
- [-1140, -0]
- [-4300, -0]
- [-5800, -0]
- [-4300, 4400]
- [-4300, -4400]
offset: 0
notes:

- poles et zeros d'un Trillium T240 no de serie 400+
- d'apres le fichier Trillium240_UserGuide_15672R7.pdf de Nanometrics.

4.8.2 FIR

A FIR filter can be specified by a symmetry and a set of numerator coefficients of the transfer function. The symmetry
specification permits to specify the filter without having to repeat values. But a FIR filter can also be specified by the
numerator and denominator coefficients of the transfer function, in which case the type “Coefficients” is used. For
more information, see the corresponding class. Finally, the specification can take the form of a list of responses, which
uses the type “ResponseList”. Again, this is straightforward. The syntax can be looked up in the corresponding class.

format_version: "0.110"

revision:
date: "2017-11-30"
authors:
- $ref: "authors/Wayne_Crawford.author.yaml#author"
filter:
type: "FIR"
symmetry: "NONE"
offset: 6
coefficients:
- 2.44141E-4
- 0.00292969
- 0.0161133
- 0.0537109
- 0.12085
- 0.193359
- 0.225586
- 0.193359
- 0.12085
- 0.0537109
- 0.0161133
- 0.00292969

(continues on next page)

4.8. Building a filter information file for different filters 45

obsinfo, Release 0.110

(continued from previous page)

- 2.44141E-4

4.8.3 Analog and Digital

Analog and digital “filters” are stages that basically amplify the signal, whether analog or digital, with the gain specified,
as usual, at the stage level. Analog filters can invert the polarity, so this needs to be specified with a polarity attribute.

format_version: "0.110"

revision:
date: "2017-11-30"
authors:
- $ref: "authors/Wayne_Crawford.author.yaml#author"
filter:
type: "Analog"
polarity: "-"

4.8.4 ANALOG to DIGITAL Converter

This is another type of pseudo-filter which has the input voltage range and the output voltage range as attributes:

format_version: "0.110"

revision:
date: "2017-11-30"
authors:
- $ref: "authors/Wayne_Crawford.author.yaml#author"
filter:

type: "ADConversion"
input_full_scale : 9 # 9 V pp
output_full_scale : 10485760 # 4FFFFF@Vref and BO0O0OOO@-Vref

* Next page, Conclusion
* Previous page

e Back to start

4.9 Summary

As a summary, remember obsinfo strives for reuse and flexibility.

1. Try to use the hierarchy referencing files as much as possible. This allows reuse across files and different cam-
paigns.

2. Use yaml_anchors for reuse in the same file

3. Start from simple files with only required fields and build up from that

46 Chapter 4. Tutorial

obsinfo, Release 0.110

4. You can add notes at any level. You can add extras only in network, station and instrumentation files. Only extras
and comments will be reflected as comments in StationXML.

5. Make extensive use of the * default channel to avoid repeating redundant information in different channels.
6. Make extensive use of configuration_definitions to avoid duplicating the same components with little variations

7. Remember: * channel default preferably for complete substitutions of a component or of a default configuration.
config_selection for changing the list of stages, filter parameters, equipment fields.

File templates are available to help you start writing your information files.

4.9.1 Conclusion

This finishes our tutorial. For more detailed information please review the Classes hierarchy where attributes are
described in detail and some optional attributes that were not discussed here for the sake of brevity are explained. Have
fun using obsinfo!

If you find any issues or have any questions please use the Issues functionality of gitlab: https://www.gitlab.com/resif/
obsinfo/issues

* Previous page

* Back to start

4.9. Summary 47

https://www.gitlab.com/resif/obsinfo/issues
https://www.gitlab.com/resif/obsinfo/issues

obsinfo, Release 0.110

48 Chapter 4. Tutorial

CHAPTER
FIVE

INFORMATION FILES

Here are examples of information files, from the most basic to the most complete. You can also see the schemas at ...

5.1 Overview

Information files are the core units of the obsinfo system. We present here the most important concepts, the hierarchy
of information files and some examples.

5.1.1 Concepts
 The basic hierarchy is subnetwork -> stations -> instrumentation -> channels -> {datalogger, preamplifier, sen-
sor} -> stages -> filter
* datalogger, preamplifier and sensor objects:
— are at the same level and all have stages subobjects.
— Are refered to collectively as’instrument_compoents

— Their stages are put into StationXML from top (stage N) to bottom (stage N+M). The ordering is sensor
-> preamplifier -> datalogger, so the top sensor stage will be the instrument’s stage 0.

— preamplifier is optional.

* information is generally divided into “atomic” files which are referenced using the $ref: operator (inherited from
JSONTref).

* The paths in the $ref operator are added to the datapath specified in the .obsinforc file (often the current directory,
a local instrumentation database and possibly an online database)

* base objects and configuration (Details)

— allow partial (pre-configured) customization of station, instrumentation and instrument_component
objects

— are specified using a base and (optional) config object at each of these levels in the information files.

— Use configuration_definitions (and a configuration_default object in case config is not specified) sub-
objects specified within the base configurable object

¢ channel modifications (Details)
— allow full customization of all objects

— provide a “base” customization for all channels, then a specification/customization of differences be-
tween individual channels

49

http://jsonref.org

obsinfo, Release 0.110

e The order of evaluation for customization is base < config < channel_modifications. Within chan-

nel_modifications, the most specific channel specifiers override the more general ones.

5.1.2 Hierarchy

We will present:
1) A basic level diagram of the entire structure (missing many sub-fields)
2) A full decription of each atomic-level object
3) A full level diagram of the entire structure, including all sub-fields

The definition (JSON Schemas) for the information files are found in obsinfo/data/schemas

1) Basic level diagram

Only required fields are shown, except a few very commonly-used fields, which are prefixed by “*”. Atomic objects

described below are surrounded by <>

subnetwork:
operators:
- <operator>
network: <network>
stations:
{STATIONNAME1}: <station>
site: <string>
start_date: <string>
end_date: <string>
location_code: <string>
locations:
{LOCATION_1}: <location>
{LOCATION_2}: <location>

instrumentation: <instrumentation>
base: <instrumentation_base>
equipment: <equipment>
channels:
default: <channel>
datalogger:
base: <datalogger_base>
equipment: <equipment>
sample_rate: <number>
stages:
base: <stage_base>
input_units:
name: <string>
description: <string>
output_units:
name: <string>
description: <string>
gain:
value: <number>

(continues on next page)

50 Chapter 5.

Information files

https://json-schema.org

obsinfo, Release 0.110

(continued from previous page)

filter: <filter>
type: <string>
- base: <stage>

*preamplifier: <preamplifier>
base:
equipment:
<equipment>
stages:
- base: <stage>
- base: <stage>
sensor: <sensor>
base:
equipment:
<equipment>
seed_codes:
band_base: "B" or "S"
instrument: <single character>
stages:
- base: <stage>
- base: <stage>
{SPECIFIC-CHANNEL1}: subset of <channel>
{SPECIFIC-CHANNEL2}: subset of <channel>

{STATIONNAME2}:

2) Atomic level diagram with comments

Starred fields are optional. If you put a level in a separate file, it is good practice to use the following file structure:

format_version: <format_version>
*revision: <revision>

*notes: <list of strings>

level: <level>

Major objects

subnetwork

network: <network>
operators: <list of operator>
stations:
<STATIONNAME1>:
<station>
<STATIONNAME2>:
<station>

(continues on next page)

5.1. Overview 51

obsinfo, Release 0.110

(continued from previous page)

*reference_names:
campaign: <string>
operator: <string>
*comments: list of strings
*extras: <free-form object>

network

code: <string>

name: <string>

start_date: <date-formatted string>

end_date: <date-formatted string>

description: <string>

*operators: <list of operator>

*comments: <list of <string> and/or <stationxml_comment>>
*restricted_status: 'open', 'closed', or 'partial'

*source_id: <uri-formatted string>

*identifiers: <list of uri-formatted string, must have prefix>

station

site: <string>

start_date: <string>

end_date: <string>

location_code: <string>

locations: object list of <location>
instrumentation:

base: <instrumentation_base>

*configuration: <string>

*modifications: <modifications>

*channel_modifications: {}

*serial_number: <string>

*notes: <list of strings>
*operators: <operators>
*comments: list of strings or <stationxml_comment>
*extras: <free-form object>
*processing:

- *clock_correction_linear: {}

- *clock_correction_leapsecond: {}
*restricted_status: ['open', 'closed', 'partial', or 'unknown']
*source_id: <string in uri format>
*external_references:

- uri: <string in uri format>

description: <string>
*identifiers:

- <string in uri format>
*water_level: <number>
*notes: <list of strings>

52 Chapter 5. Information files

obsinfo, Release 0.110

instrumentation_base

equipment: {}
channels:
default:
<channel>
<SPECIFIC-CHANNEL1>:
subset of <channel>
<SPECIFIC-CHANNEL2>:
subset of <channel>

*configuration_default: <string>

*configurations:
{CONFIGURATION_1}: <subset of instrumentation>
{CONFIGURATION_2}: <subset of instrumentation>

channel

datalogger:
base: <datalogger>
*configuration: <string>
Sensor:
base: <sensor>
*configuration: string
preamplifier:
base: <preamplifier>
*configuration: <string>
*orientation: <orientation>
*location_code: <string> # if not specified, inherits from station
*comments: <list of string>
*restricted_status": 'open', 'closed'
*source_id": <uri-formatted string>
*identifiers": <list of uri-formatted strings, must have scheme>
*external_references": <list of {uri: description}>
*extras: <free-format object>

5.1. Overview 53

obsinfo, Release 0.110

datalogger_base

<GENERIC_COMPONENT>
sample_rate: number
*correction: number

preamplifier_base

<GENERIC_COMPONENT>

sensor_base

<GENERIC_COMPONENT>
seed_codes:

GENERIC_COMPONENT

equipment: <equipment>
*stage_modifications: {}
*notes: <list of string>
*stages:
- base: <stage>
*configuration: <string>
- base: <stage>
*configuration: <string>
*configuration_default: <string>
*configurations:
{CONFIGURATION_1}: <subset of datalogger, sensor, or preamplifier>
{CONFIGURATION_2}: <subset of datalogger, sensor, or preamplifier>

stage_base

input_units: <string>
output_units: <string>

gain: <float>

*name: <string>

*description: <string>
*decimation_factor: <integer>
*delay: <number>
*calibration_date: <string>
*polarity: '+' or '-' # default is '+
*input_sample_rate: <number>
*resource_id: <string>

(continues on next page)

54 Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

*filter:
<filter>
*configuration_default: <string>
*configurations:
{CONFIGURATION_1}: <subset of stage>
{CONFIGURATION_2}: <subset of stage>

filter

fields depend on type:

type: "PoleZeros"

poles: <list of string>
zeros: <list of string>
*delay.samples: <float>

*transfer_function_type: "LAPLACE (RADIANS/SECOND)", "LAPLACE (HERTZ)", or "DIGITAL (Z-

. TRANSFORM) "
*normalization_frequency: <number>
*normalization_factor: <number>
*resource_id: <string>

type: "FIR"

symmetry: "EVEN", "ODD" or "NONE"
coefficients: <list>
coefficient_divisor: <number>
*delay.samples: <number>
*resource_id: <string>

type: "Coefficients"
numerator_coefficients: <list>
denominator_coefficients": <list>
*delay.samples: <number>

transfer_function_type: "ANALOG (RADIANS/SECOND)", "ANALOG (HERTZ)" or "DIGITAL"

*offset: <number>
*resource_id: <string>

type: "ResponselList"”
elements: <list>
*delay.samples: <number>
*resource_id: <string>

type: "Polynomial"
frequency_lower_bound: <number>
frequency_upper_bound: <number>
approximation_lower_bound: <number>
approximation_upper_bound: <number>
maximum_error: <number>
coefficients: <list of number>

(continues on next page)

5.1. Overview

55

obsinfo, Release 0.110

(continued from previous page)

*approximation_type: "MACLAURIN"
*resource_id: <string>

type: "ADConversion"
input_full_scale: <number>
output_full_scale: <number>
*delay.samples: <number>
*resource_id: <string>

type: "Analog"
*delay.seconds: <number>
*resource_id: <string>

type: "Digital”
*delay.samples: <number>
*resource_id: <string>

Minor objects

person_, operator_, location_base_ and network are often in separate files.

equipment_ is widespread enough that it should probably have its own schema file

names: <list of string>
*agencies: <list of string>
*emails: <list of string>
*phones: <list of string>

type: <string>

description: <string>

manufacturer: <string>

model: <string>

*vendor: <string>

*serial_number: <string>

*installation_date: <date-formatted string>
*removal_date: <date-formatted string>
*calibration_dates: <list of date_formatted strings>
*resource_id: <'GENERATOR:Meaningful ID' str>

base:
uncertainties.m:
lat: <number> (in meters)
lon: <number> (in meters)
elev: <number> (in meters)
depth.m: <number>
geology: <string>
vault: <string>
*localisation_method: <string>
position:
lat: <number> (in degrees)

(continues on next page)

56

Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

lon: <number> (in degrees)
elev: <number> (in meters)

agency: <string>
*contacts: <list of person>
*website: <string>

date: <string>
authors: <list of person>

value: <string>

*begin_effective_time: <date-formatted string>
*end_effective_time: <date-formatted string>
*authors: <list of person>

3) Full level diagram

Structural units

A full obsinfo subnetwork description consists of the following fields (starred fields are optional):

format_version: {}
*revision: {}
*notes: []
subnetwork:

network: <network>
operators: <list of operator>
*restricted_state: {}
*comments: <list of string>
*extras: <free-form object>
*reference_names:
campaign: <string>
operator: <string>
stations:
<STATIONNAME1>:
site: <string>
start_date: <string>
end_date: <string>
location_code: <string>
*serial_number: <string>
*operators: <list of operator>

instrumentation:
base:
equipment: <equipment>
channels:
default:
*orientation: <orientation>
datalogger:
base:
<< GENERIC_COMPONENT
(continues on next page)
5.1. Overview 57

obsinfo, Release 0.110

(continued from previous page)

sample_rate: <number>
*correction: <number>
*configuration: <string>
*modifications: <subset of base>
*stage_modifications: <stage_modifications>
*serial_number: <string>
*notes: <list of string>
preamplifier:
base:
<< GENERIC_COMPONENT
*configuration: <string>
*modifications: <subset of base>
*stage_modifications: <stage_modifications>
*serial_number: <string>
*notes: <list of string>
Sensor:
base:
<< GENERIC_COMPONENT
seed_codes:
band_base: 'B' or 'S'
instrument: <character>
*configuration: <string>
*modifications: <subset of base>
*stage_modifications: <stage_modifications>
*serial_number: <string>
*notes: <list of string>
*location_code: <string>
*restricted_status: 'open', 'closed', or 'partial'
*source_id: <uri-formatted string>
*identifiers: <list of uri-formatted strings>
*external_references:
- uri: <uri-formatted string>
description: <string>
*comments: <list of string or stationxml_comment>
*extras: <free-form object>
<SPECIFIC-CHANNEL1>: {}
<SPECIFIC-CHANNEL2>: {}

*channel_modifications: {}

*serial_number: <string>
locations: {}
*notes: <list of string>
*comments: <list of string or stationxml_comment>
*extras: <free-form object>
*processing:

- *clock_correction_linear: {}

- *clock_correction_leapsecond: {}
*water_level.m: <number>
*restricted_status: 'open', 'closed', or 'partial'
*source_id: <uri-formatted string>
*identifiers: <list of uri-formatted strings>
*external_references:

(continues on next page)

58

Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

- uri: <uri-formatted string>
description: <string>
<STATIONNAME2>:

5.2 base-configuration-modification

Several elements in information files are expressed using “base-configuration-modification”. This allows easy specifi-
ation or modification of values with minimum repetition.

The base and configurations are defined in an element named <field>:base and are implemented and modified in an
element just above named <field>, where field could be instrumentation, location, sensor, datalogger,
preamplifier or stage. For example:

datalogger:
base:
equipment:
stages:
sample_rate: 125
correction: 0.232
configuration_default: "125sps”
configurations:
"62.5sps":
configuration_description: "62.5 sps”
sample_rate: 62.5
correction: 0.464
stages:
"125sps":
configuration_description: "125 sps"
"250sps":
configuration_description: "250 sps"
sample_rate: 250
correction: 0.116

stages:
configuration: "250sps"
modification:
correction: 1.0
equipment:
serial_number: "FO5"
<shortcuts>

<non-base_elements>
<specific_modifications>

If the datalogger base were specified and no configuration was specified, then the “125sps” configuration would be
used. The configuration_description is appended to the equipment description.

In this example the “250sps” configuration is specified, so the values in the “250sps” configuration will replace the
values with the same names in the base definition.

The modifications field allows one to further modify the values. The values specified in modifications overwrite
corresponding values in both the base and the configuration.

5.2. base-configuration-modification 59

obsinfo, Release 0.110

Ifno configuration_default is specified and configurations is specified, the level above MUST specify the con-
figuration. This will not be caught by obsinfo-validate: only by obsinfo_print or obsinfo_makeStationXML.

The base element must include all required fields for the element (needed for obsinfo-validate). In our example,
since this base configuration specifies the values corresponding to a 125 sps sampling rate, the “125sps” configuration
is nearly empty.

configurations are optional, so if you only have one configuration you don’t have to add additional elements. Some
elements (such as timing_bases) may nneed a configuration but the base-configuration-modification system provides
a consistent interface that allows us to easily add in information, in this case sync times.

In almost all cases, the element definition should be in a separate file: for example the datalogger definition file would
contain:

datalogger_base:
equipment:
stages:
sample_rate: 125
correction: 0.232
configuration_default: "125sps”
configurations:
"62.5sps":
configuration_description: "62.5 sps"
sample_rate: 62.5
correction: 0.464
stages:
"125sps":
configuration_description: "125 sps"
"250sps":
configuration_description: "250 sps"
sample_rate: 250
correction: 0.116
stages:

and the call to it would look like:

datalogger:
base: {$ref: 'dataloggers/LC2000.datalogger_base.yaml#datalogger_base'}
configuration: "250sps"”
modifications:
correction: 1.0
equipment:
serial_number: "F05"

5.2.1 Shortcuts

Shortcuts allow you to quickly enter common modifications. For example, the datalogger element has a shortcut
called serial_number that duplicates datalogger: {equipment: {serial_number:}},allowing you to write
the above code as:

datalogger:
base: {$ref: 'dataloggers/LC2000.datalogger_base.yaml#datalogger_base'}
configuration: "250sps"”
serial_number: "FO5"

(continues on next page)

60 Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

modifications:
correction: 1.0

Shortcuts override equivalent entries at the modifications level. They are:

Shortcut Replaces

instrumentation: instrumentation: {channel_modifications: {'*-*':
{datalogger_configuration:} {datalogger: {configuration:}}}}

instrumentation: instrumentation: {modifications: {equipment:
{serial_number:} {serial_number:}}}

datalogger: {serial_number:} | datalogger: {modifications: {equipment:
{serial_number:}}}

sensor: {serial_number:} sensor: {modifications: {equipment:
{serial_number:}}}

preamplifier: preamplifier: {modifications: {equipment:

{serial_number:} {serial_number:}}}

5.2.2 Non-base elements

Non-base elements are not specified in the base element, because they are expected to be different for each deployment.
They are:

location:

position: {lat: <number>, lon: <number>, elev: <number>}

clock_correction_linear:

start_sync_reference: <date-time>
end_sync_reference: <date-time>
end_sync_instrument: <date-time>

5.2.3 Specific modifications

Specific modifications apply only to certain channels or even certain stages of a given channel. They are specified
using the channel_modifications and stage_modifications elements at the instrumentation, datalogger,
sensor or preamplifier level. Details are provided in channel_modifications and in stage_modifications.

5.2. base-configuration-modification 61

obsinfo, Release 0.110

5.3 Comparison with StationXML

obsinfo information fields are as close to StationXML as feasible, but the need to reduce duplicated information requires
some changes.

5.3.1 Summmary of differences

YAML _instead of XML

Files are easier to read (as long as they are kept small) and we can take advantage of the JSONref_ standard for
importing files

arrays instead of multiply-used fields:

XML allows the same field name to be used repeatedly, YAML_ does not. So multiply-used fields in StationXML are
replaced with arrays, usually with an ““s” tacked onto the field name. Some examples (noted as they are in the following
tables) are:

StationXML field obsinfo array
Comment: (0+) comments: []
CalibrationDate: (0+) | calibration_dates: []

Use of $ref s to insert other files

Inherited from JSONref _ and is the key to reducing information to atomic components

Use of base channels and specific modifiers

Many channels have much the same information (position, start and enddates, even sensors). obsinfo therefore allows
a base channel definition, which is then modified by values placed in the specfic modifiers fields

Default inheritance of some fields
In many cases, the operator, location_code, start_date and end_date values are the same at the network, station and

channel levels. In StationXML they must be redefined in each level. In obsinfo, if they are not defined at a level, they
are inherited from the level above.

No sensitivity stage in obsinfo

The StationXML sensitivity stage is supposed to correspond to the sum of the sensitivities of the underlying stages.
obsinfo therefore simply calculates this value from the provided stages

62 Chapter 5. Information files

https://www.w3.org/XML/
http://docs.fdsn.org/projects/stationxml/en/latest/index.html

obsinfo, Release 0.110

Handling of InstrumentComponents
StationXML Channel/Datalogger, Channel/Sensor and Channel/Preamplifier elements are actually Equipment
objects. These elements’ response stages are mixed into the Channel/Stages list.

obsinfo_ datalogger, sensor and (optional) preamplifier elements contain equipment definitions,
response_stage lists and elements specific to each InstrumentComponent (sensor : seed_code, azimuth,
dip. datalogger: sampling_rate) which are given flatly in the StationXML Channel level

The StationXML InstrumentSensitivity stage should equal the sum of the sensitivities of the underlying stages at the
given frequency. obsinfo_ therefore does not ask for this value, but calculates it from the provided stages

Handling of positions
StationXML 1.2 specifies Station and Channel positions using the elements Latitude, Longitude and Elevation, each
of which is based on the FloatType_ which includes units, plusError, minusError and measurementMethod

Latitudes and Longitudes are generally given in degrees and Elevation in meters, but most most OBS (and land station)
positions have an uncertainty that is approximately constant (in meters), depending on the measurementMethod.

For this reason, obsinfo_ expresses positions and their uncertainties using three elements: - position: ({lat:, lon:,
elev.m:} - positition_uncertainty: {lat.m, lon.m, elev.m} - position_measurement_method: string

This allows the position_uncertainty values to be associated with a measurement method and entered separately from
the actual instrument position. obsinfo_ then translates these values into StationXML FloatTypes with the appropriate
units arc-degrees, arc-degrees and meters), with the arc-degrees value depending on the station latitude.

5.3.2 Line-by-line comparison of differences

Below is a line by line naming of StationXML 1.2 fields and their equivalent name in obsinfo information files:

StationXML FDSNStationXML | obsinfo

Source None

Sender None

Module None

ModuleURI None

Created Automatically calculated
Network See Network_ level

5.3. Comparison with StationXML 63

http://docs.fdsn.org/projects/stationxml/en/latest/index.html
http://docs.fdsn.org/projects/stationxml/en/latest/index.html
http://docs.fdsn.org/projects/stationxml/en/latest/index.html

obsinfo, Release 0.110

StationXML Network obsinfo network
code (attribute) code

startDate (attribute) start_date:
endDate (attribute) end_date:
sourcelD (attribute) source_id
restrictedStatus (attribute) | restricted_status
Description description
Comment (0+) comments
Operator operator
Identifier identifiers

SelectedNumberStations

number of stations specified

Station (0+)

stations *see station_ *

*DataAvailability None

alternateCode (attribute) None

historicalCode (attribute) | None
StationXML Equipment | obsinfo equipment
Description description
Type type
Manufacturer manufacturer
Model model
Vendor vendor
SerialNumber serial_ number
InstallationDate installation_date
RemovalDate removal_date
resourceld resource_id
CalibrationDate: (0+) calibration_dates: []

The StationXML Response level is replaced in obsinfo_ by the datalogger preamplifier and sensor levels

StationXML Re- | obsinfo channel Notes
sponse
resourceld (at-
tribute)
InstrumentSensitiv- | calculated from Stages
ity
InstrumentPolyno- None StationXML allows either InstrumentSensitivity or Instru-
mial mentPolynomial
Stage (0+) datalogger_ preamplifier_
sensor_
StationXML Stage | obsinfo stage Notes
number (attribute) calculated by obsinfo
resourceld (attribute)
{Type} filter/type: Can be PolesZeros, Coefficients, ResponseList, FIR or Polynomial
Decimation DecimationType_, Not in “Polynomials”
StageGain GainType: Value, Frequency. Not in “Polynomials”
64 Chapter 5. Information files

http://docs.fdsn.org/projects/stationxml/en/latest/index.html

obsinfo, Release 0.110

StationXML DecimationType | obsinfo stage | Notes

InputSampleRate

Factor

Offset

Delay

Correction

StationXML PolesZeros | obsinfo filter | Notes

name (attribute)

resourceld (attribute)

Description

InputUnits

OutputUnits

PzTransferFunctionType

NormalizationFactor

NormalizationFrequency

Zero: (0+)

Pole: (0+)

StationXML Coefficients | obsinfo filter | Notes

name (attribute)

resourceld (attribute)

Description

InputUnits

OutputUnits

CfTransferFunctionType

Numerator: (0+)

Denominator: (0+)

StationXML ResponselList | obsinfo filter | Notes

name (attribute)

resourceld (attribute)

Description

InputUnits

OutputUnits

ResponseListElement: (0+) StationXML: Frequency, Amplitude, Phase
StationXML FIR obsinfo filter | Notes

name (attribute)

resourceld (attribute)

Description

InputUnits

OutputUnits

Symmetry

NONE, EVEN or ODD

NumeratorCoefficient: (0+)

5.3. Comparison with StationXML

65

http://docs.fdsn.org/projects/stationxml/en/latest/index.html

obsinfo, Release 0.110

StationXML Polynomial

obsinfo filter

Notes

name (attribute)

resourceld (attribute)

Description

InputUnits

OutputUnits

ApproximationType

default="MACLAURIN">

FrequencyLowerBound

FrequencyUpperBound

ApproximationLowerBound

ApproximationUpperBound

MaximumError

Coefficient: (0+)

StationXML Operator | obsinfo operator
Agency: string agency: string
Contact: [] contacts: []
WebSite: URI website: uri

StationXML PersonType | obsinfo person

Name: (0+) name:

Agency: (0+) agencies: []

Email: (0+) emails: []

Phone: (0+) phones: [PhoneNumberType_]
StationXML PhoneNumberType | obsinfo
CountryCode
AreaCode
PhoneNumber
name

StationXML uncertaintyDouble

obsinfo

plusError (attribute)

uncertainty: float

minusError (attribute)

measurementMethod (attribute)

measurement_method: string

FDSNStationXML:
Network:
Station:
Channel:
- *Description: string*
Identifier:
- string
*Comment : *
- Value: string
BeginEffectiveTime: '2017-08-25T05:02:50.47"'
EndEffectiveTime: '2016-03-07T01:49:19.16"
(continues on next page)
66 Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

Author: ''

(]

- Value: string
DataAvailability:

Extent: "'

Span:

ExternalReference:
URI: <URI>
Description: string

Latitude: number

Longitude: number

Elevation: number

Depth: number

*Azimuth: number®

Dip: number

Type:

- [CONTINUOUS, HEALTH, SYNTHESIZED, GEOPHYSICAL, TRIGGERED, or WEATHER]

SampleRate: number
SampleRateRatio:
NumberSamples: number
NumberSeconds: number
ClockDrift: number
CalibrationUnits:
Name: string
Description: string
Sensor:
<equipment>
PreAmplifier:
<equipment>
Datalogger:
<equipment>
Equipment:
<equipment>
Response:
AnyElementYouLike: Some Data Or Other Elements
- Identifier: string

<DecimationType
InputSampleRate
Factor
Offset
Delay
Correction

<BaseNodeType>
code *(attribute)*
*startDate *(attribute)*
endDate *(attribute)*

(continues on next page)

5.3. Comparison with StationXML

67

obsinfo, Release 0.110

(continued from previous page)

sourceID *(attribute)*
*restrictedStatus® *(attribute)*
alternateCode *(attribute)*
historicalCode *(attribute)*
*Description:®

Identifier (0+)

Comment (0+)
DataAvailability

code-block:: yaml

<BaseFilterType>
name (attribute)
resourceld (*attribute*)
*Description®
InputUnits
OutputUnits

stationxml 1.2 schema, with <annotations> and their contained <documentation>s removed

<xs:element name="FDSNStationXML" type="£sx:RootType"/>
<xs:complexType name="RootType">
<XS:sequence>
<xs:element name="Source" type="xs:string">
<xs:element name="Sender" type="xs:string" minOccurs="0">
<xs:element name="Module" type="xs:string" minOccurs="0">
<xs:element name="ModuleURI" type="xs:anyURI" minOccurs="0">
<xs:element name="Created" type="xs:dateTime'">
<xs:element name="Network" type="fsx:NetworkType" maxOccurs=
—"unbounded" />
<Xs:any namespace="##other" processContents="1lax" minOccurs="0".
—max0Occurs="unbounded" />
</Xs:sequence>
<xs:attribute name="schemaVersion" type="xs:decimal" use="required">
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>
<xs:complexType name="NetworkType'">
<xs:complexContent>
<xs:extension base="fsx:BaseNodeType">
<Xs:sequence>
<xs:element name="Operator" type="fsx:0OperatorType".
—minOccurs="0"
maxOccurs="unbounded">
<xs:element name="TotalNumberStations" type=
—"fsx:CounterType" minOccurs="0">
<xs:element name="SelectedNumberStations" type=
—"fsx:CounterType" minOccurs="0">
<xs:element name="Station" type="fsx:StationType".
—minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
</xs:extension>

(continues on next page)

68 Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

</xs:complexContent>
</xs:complexType>
<xs:complexType name="StationType">
<xs:complexContent>
<xs:extension base="fsx:BaseNodeType'">
<Xs:sequence>
<xs:element name="Latitude" type="fsx:LatitudeType">
<xs:element name="Longitude" type="£fsx:LongitudeType">
<xs:element name="Elevation" type="fsx:DistanceType'">
<xs:element name="Site" type="fsx:SiteType">
<xs:element name="WaterLevel" type="fsx:FloatType" minOccurs="0">
<xs:element name="Vault" type="xs:string" minOccurs="0">
<xs:element name="Geology" type="xs:string" minOccurs="0">
<xs:element name="Equipment" type="£fsx:EquipmentType" minOccurs="0"
maxOccurs="unbounded">
</xs:element>
<xs:element name="Operator" type="fsx:OperatorType" minOccurs="0"
maxOccurs="unbounded">
</xs:element>
<xs:element name="CreationDate" type="xs:dateTime" minOccurs="0">
<xs:element name="TerminationDate" type="xs:dateTime" minOccurs="0">
<xs:element name="TotalNumberChannels" type="£fsx:CounterType" minOccurs=
<"0M>
<xs:element name="SelectedNumberChannels" type="£fsx:CounterType".
—minOccurs="0">
<xs:element name="ExternalReference" type="fsx:ExternalReferenceType"
minOccurs="0" maxOccurs="unbounded">
<xs:element name="Channel" type="fsx:ChannelType" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<!-- End StationType-->
<xs:complexType name="ChannelType">
<xs:complexContent>
<xs:extension base="fsx:BaseNodeType">
<Xs:sequence>
<xs:element name="ExternalReference" type="fsx:ExternalReferenceType"
minOccurs="0" maxOccurs="unbounded">
</xs:element>
<xs:element name="Latitude" type="fsx:LatitudeType'">
<xs:element name="Longitude" type="fsx:LongitudeType">
<xs:element name="Elevation" type="£fsx:DistanceType">
<xs:element name="Depth" type="fsx:DistanceType'">
<xs:element name="Azimuth" type="fsx:AzimuthType" minOccurs="0">
<xs:element name="Dip" type="fsx:DipType" minOccurs="0">
<xs:element name="WaterLevel" type="fsx:FloatType" minOccurs="0">
<xs:element name="Type" minOccurs="0" maxOccurs="unbounded">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="TRIGGERED"/>

(continues on next page)

5.3. Comparison with StationXML 69

obsinfo, Release 0.110

(continued from previous page)

<xs:enumeration value="CONTINUOUS"/>
<xs:enumeration value="HEALTH"/>
<xs:enumeration value="GEOPHYSICAL"/>
<xs:enumeration value="WEATHER"/>
<xs:enumeration value="FLAG"/>
<xs:enumeration value="SYNTHESIZED"/>
<xs:enumeration value="INPUT"/>
<xs:enumeration value="EXPERIMENTAL"/>
<xs:enumeration value="MAINTENANCE"/>
<xs:enumeration value="BEAM"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:group ref="fsx:SampleRateGroup" minOccurs="0"/>
<xs:element name="ClockDrift" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:restriction base="fsx:FloatType">
<xs:minInclusive value="0"/>
<xs:attribute name="unit" type="xs:string" use="optional
" fixed="SECONDS/SAMPLE">
</xs:attribute>
</Xs:restriction>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="CalibrationUnits" type="fsx:UnitsType" minOccurs="0">
<xs:element name="Sensor" type="fsx:EquipmentType" minOccurs="0">
<xs:element name="PreAmplifier" type="fsx:EquipmentType" minOccurs="0">
<xs:element name="Datalogger" type="fsx:EquipmentType" minOccurs="0">
<xs:element name="Equipment" type="£fsx:EquipmentType" minOccurs="0".
—maxOccurs="unbounded">
<xs:element name="Response" type="£fsx:ResponseType" minOccurs="0"/>
</Xs:sequence>
<xs:attribute name="locationCode" type="xs:string" use="required">
</xs:extension>
</xs:complexContent>
</xs:complexType>
<!-- End ChannelType -->
<xs:complexType name="GainType">
<Xs:sequence>
<xs:element name="Value" type="xs:double">
<xs:element name="Frequency" type="xs:double">
</Xs:sequence>
</xs:complexType>
<xs:group name="FrequencyRangeGroup">
<XSs:sequence>
<xs:element name="FrequencyStart" type="xs:double">
<xs:element name="FrequencyEnd" type="xs:double">
<xs:element name="FrequencyDBVariation" type="xs:double">
</Xs:sequence>
</Xs:group>

(continues on next page)

70 Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

<xs:complexType name="SensitivityType">
<xs:complexContent>
<xs:extension base="fsx:GainType">
<Xs:sequence>
<xs:element name="InputUnits" type="fsx:UnitsType'">
<xs:element name="OutputUnits" type="£fsx:UnitsType'>
<xs:group ref="fsx:FrequencyRangeGroup" minOccurs="0">
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="EquipmentType'>
<Xs:sequence>
<xs:element name="Type" type="xs:string" minOccurs="0">
<xs:element name="Description" type="xs:string" minOccurs="0">
<xs:element name="Manufacturer" type="xs:string" minOccurs="0">
<xs:element name="Vendor" type="xs:string" minOccurs="0">
<xs:element name="Model" type="xs:string" minOccurs="0">
<xs:element name="SerialNumber" type="xs:string" minOccurs="0">
<xs:element name="InstallationDate" type="xs:dateTime" minOccurs="0">
<xs:element name="RemovalDate" type="xs:dateTime" minOccurs="0">
<xs:element name="CalibrationDate" type="xs:dateTime" minOccurs="0" maxOccurs=
—"unbounded">
<xs:any namespace="##other" processContents="1lax" minOccurs="0" maxOccurs=
—"unbounded" />
</Xs:sequence>
<xs:attribute name="resourceId" type="xs:string" use="optional'>
</xs:attribute>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>
<xs:complexType name="ResponseStageType">
<Xs:sequence>
<xs:choice>
<XSs:sequence>
<xs:choice>
<xs:element name="PolesZeros" type="£fsx:PolesZerosType" minOccurs="0
">
<xs:element name="Coefficients" type="fsx:CoefficientsType".
—minOccurs="0"/>
<xs:element name="ResponseList" type="fsx:ResponseListType".
—minOccurs="0"/>
<xs:element name="FIR" type="fsx:FIRType" minOccurs="0">
</xs:choice>
<xs:element name="Decimation" type="fsx:DecimationType" minOccurs="0"/>
<xs:element name="StageGain" type="£fsx:GainType'">
</Xs:sequence>
<xs:element name="Polynomial" type="fsx:PolynomialType">
</xs:choice>
<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs=
—"unbounded" />
</Xs:sequence>
<xs:attribute name="number" type="£fsx:CounterType" use="required">

(continues on next page)

5.3. Comparison with StationXML 71

obsinfo, Release 0.110

(continued from previous page)

<xs:attribute name="resourceId" type="xs:string">
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>
<xs:complexType name="CommentType">
<Xs:sequence>
<xs:element name="Value" type="xs:string">
<xs:element name="BeginEffectiveTime" type="xs:dateTime" minOccurs="0">
<xs:element name="EndEffectiveTime" type="xs:dateTime" minOccurs="0">
<xs:element name="Author" type="fsx:PersonType" minOccurs="0" maxOccurs=
< "unbounded'">
</Xs:sequence>
<xs:attribute name="id" type="fsx:CounterType" use="optional'>
<xs:attribute name="subject" type="xs:string" use="optional">
</xs:complexType>
<xs:complexType name="PolesZerosType">
<xs:complexContent>
<xs:extension base="fsx:BaseFilterType">
<Xs:sequence>
<xs:element name="PzTransferFunctionType'">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="LAPLACE (RADIANS/SECOND)"/>
<xs:enumeration value="LAPLACE (HERTZ)"/>
<xs:enumeration value="DIGITAL (Z-TRANSFORM)"/>
</Xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="NormalizationFactor" type="xs:double" default="1.0">
<xs:element name="NormalizationFrequency" type="£fsx:FrequencyType">
<xs:element name="Zero" type="fsx:PoleZeroType" minOccurs="0" maxOccurs=
< "unbounded'">
<xs:element name="Pole" type="fsx:PoleZeroType" minOccurs="0" maxOccurs=
—"unbounded">
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="FIRType'">
<xs:complexContent>
<xs:extension base="fsx:BaseFilterType">
<XSs:sequence>
<xs:element name="Symmetry'>
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="NONE"/>
<xs:enumeration value="EVEN"/>
<xs:enumeration value="0DD"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="NumeratorCoefficient" minOccurs="0" maxOccurs=
< "unbounded'">

(continues on next page)

72 Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:double'">
<xs:attribute name="i" type="xs:integer"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</Xs:sequence>
</Xxs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="CoefficientsType">
<xs:complexContent>
<xs:extension base="fsx:BaseFilterType">
<Xs:sequence>
<xs:element name="CfTransferFunctionType'>
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="ANALOG (RADIANS/SECOND)"/>
<xs:enumeration value="ANALOG (HERTZ)"/>
<xs:enumeration value="DIGITAL"/>
</Xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Numerator" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="fsx:FloatNoUnitType">
<xs:attribute name="number" type="fsx:CounterType"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="Denominator" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="fsx:FloatNoUnitType">
<xs:attribute name="number" type="fsx:CounterType"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</Xs:sequence>
</Xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ResponselListElementType'>
<Xs:sequence>
<xs:element name="Frequency" type="fsx:FrequencyType"/>
<xs:element name="Amplitude" type="fsx:FloatType"/>
<xs:element name="Phase" type="fsx:AngleType"/>

(continues on next page)

5.3. Comparison with StationXML 73

obsinfo, Release 0.110

(continued from previous page)

</Xs:sequence>
</xs:complexType>
<xs:complexType name="ResponselListType">
<xs:complexContent>
<xs:extension base="fsx:BaseFilterType">
<Xs:sequence>
<xs:element name="ResponseListElement" type="fsx:ResponseListElementType"
minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
</Xxs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="PolynomialType">
<xs:complexContent>
<xs:extension base="fsx:BaseFilterType">
<Xs:sequence>
<xs:element name="ApproximationType" default="MACLAURIN">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="MACLAURIN"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="FrequencyLowerBound" type="fsx:FrequencyType">
<xs:element name="FrequencyUpperBound" type="fsx:FrequencyType'">
<xs:element name="ApproximationLowerBound" type="xs:double">
<xs:element name="ApproximationUpperBound" type="xs:double">
<xs:element name="MaximumError" type="xs:double">
<xs:element name="Coefficient" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="fsx:FloatNoUnitType">
<xs:attribute name="number" type="fsx:CounterType"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</Xs:sequence>
</Xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="DecimationType">
<Xs:sequence>
<xs:element name="InputSampleRate" type="fsx:FrequencyType"/>
<xs:element name="Factor" type="xs:integer">
<xs:element name="0Offset" type="xs:integer">
<xs:element name="Delay" type="fsx:FloatType">
<xs:element name="Correction" type="fsx:FloatType">
</Xs:sequence>
</xs:complexType>
<!-- The following elements represent numbers. -->
<xs:attributeGroup name="uncertaintyDouble">

(continues on next page)

74 Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

<xs:attribute name="plusError" type="xs:double" use="optional'>
<xs:attribute name="minusError" type="xs:double" use="optional'>
<xs:attribute name="measurementMethod" type="xs:string" use="optional"/>
</xs:attributeGroup>
<xs:complexType name="FloatNoUnitType">
<xs:simpleContent>
<xs:extension base="xs:double">
<xs:attributeGroup ref="fsx:uncertaintyDouble"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="FloatType">
<xs:simpleContent>
<xs:extension base="xs:double">
<xs:attribute name="unit" type="xs:string" use="optional">
<xs:attributeGroup ref="fsx:uncertaintyDouble"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>
<!-- Derived from FloatType. -->
<xs:complexType name="SecondType'">
<xs:simpleContent>
<xs:restriction base="fsx:FloatType'">
<xs:attribute name="unit" type="xs:string" fixed="SECONDS">
<xs:attributeGroup ref="fsx:uncertaintyDouble"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="VoltageType'">
<xs:simpleContent>
<xs:restriction base="fsx:FloatType">
<xs:attribute name="unit" type="xs:string" fixed="VOLTS">
<xs:attributeGroup ref="fsx:uncertaintyDouble"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="AngleType">
<xs:simpleContent>
<xs:restriction base="fsx:FloatType'">
<xs:minInclusive value="-360"/>
<xs:maxInclusive value="360"/>
<xs:attribute name="unit" type="xs:string" use="optional" fixed="DEGREES">
<xs:attributeGroup ref="fsx:uncertaintyDouble"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="LatitudeBaseType">
<xs:simpleContent>
<xs:restriction base="fsx:FloatType'">
<xs:minInclusive value="-90"/>
<xs:maxExclusive value="90"/>
<xs:attribute name="unit" type="xs:string" use="optional" fixed="DEGREES">

(continues on next page)

5.3. Comparison with StationXML 75

obsinfo, Release 0.110

(continued from previous page)

<xs:attributeGroup ref="fsx:uncertaintyDouble"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="LatitudeType">
<xs:simpleContent>
<xs:extension base="fsx:LatitudeBaseType">
<xs:attribute name="datum" type="xs:NMTOKEN" use="optional" default="WGS84"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="LongitudeBaseType'">
<xs:simpleContent>
<xs:restriction base="fsx:FloatType">
<xs:minInclusive value="-180"/>
<xs:maxInclusive value="180"/>
<xs:attribute name="unit" type="xs:string" use="optional" fixed="DEGREES">
<xs:attributeGroup ref="fsx:uncertaintyDouble"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="LongitudeType'">
<xs:simpleContent>
<xs:extension base="fsx:LongitudeBaseType">
<xs:attribute name="datum" type="xs:NMTOKEN" use="optional" default="WGS84"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="AzimuthType">
<xs:simpleContent>
<xs:restriction base="fsx:FloatType">
<xs:minInclusive value="0"/>
<xs:maxExclusive value="360"/>
<xs:attribute name="unit" type="xs:string" use="optional" fixed="DEGREES">
<xs:attributeGroup ref="fsx:uncertaintyDouble"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="DipType'>
<xs:simpleContent>
<xs:restriction base="fsx:FloatType">
<xs:minInclusive value="-90"/>
<xs:maxInclusive value="90"/>
<xs:attribute name="unit" type="xs:string" use="optional" fixed="DEGREES">
<xs:attributeGroup ref="fsx:uncertaintyDouble"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="DistanceType'">
<xs:simpleContent>
<xs:restriction base="fsx:FloatType">
<xs:attribute name="unit" type="xs:string" use="optional" default="METERS">

(continues on next page)

76 Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

<xs:attributeGroup ref="fsx:uncertaintyDouble"/>
</xs:restriction>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="FrequencyType">
<xs:simpleContent>
<xs:restriction base="fsx:FloatType'">
<xs:attribute name="unit" type="xs:string" use="optional" fixed="HERTZ">
</xs:restriction>
</xs:simpleContent>
</xs:complexType>
<xs:group name="SampleRateGroup">
<Xs:sequence>
<xs:element name="SampleRate" type="£fsx:SampleRateType">
<xs:element name="SampleRateRatio" type="fsx:SampleRateRatioType" minOccurs="0">
</Xs:sequence>
</Xs:group>
<xs:complexType name="SampleRateType">
<xs:simpleContent>
<xs:restriction base="fsx:FloatType">
<xs:attribute name="unit" type="xs:string" use="optional" fixed="SAMPLES/S">
</Xs:restriction>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="SampleRateRatioType">
<Xs:sequence>
<xs:element name="NumberSamples" type="xs:integer">
<xs:element name="NumberSeconds" type="xs:integer">
</Xs:sequence>
</xs:complexType>
<xs:complexType name="PoleZeroType">
<Xs:sequence>
<xs:element name="Real" type="fsx:FloatNoUnitType'>
<xs:element name="Imaginary" type="fsx:FloatNoUnitType">
</Xs:sequence>
<xs:attribute name="number" type="xs:integer">
</xs:complexType>
<xs:simpleType name="CounterType">
<xs:restriction base="xs:integer">
<xs:minInclusive value="0"/>
</Xxs:restriction>
</xs:simpleType>
<xs:complexType name="OperatorType'">
<Xs:sequence>
<xs:element name="Agency" type="xs:string">
<xs:element name="Contact" type="fsx:PersonType" minOccurs="0" maxOccurs=
—"unbounded" />
<xs:element name="WebSite" type="xs:anyURI" minOccurs="0">
</Xs:sequence>
</xs:complexType>
<xs:complexType name="PersonType">
<Xs:sequence>

(continues on next page)

5.3. Comparison with StationXML 77

obsinfo, Release 0.110

(continued from previous page)

<xs:element name="Name" type="xs:string" minOccurs="0" maxOccurs="unbounded">
<xs:element name="Agency" type="xs:string" minOccurs="0" maxOccurs="unbounded">
<xs:element name="Email" type="fsx:EmailType" minOccurs="0" maxOccurs="unbounded

<>

<xs:element name="Phone" type="fsx:PhoneNumberType" minOccurs="0" maxOccurs=
—"unbounded'">
</Xs:sequence>
</xs:complexType>
<xs:complexType name="SiteType'>
<Xs:sequence>

<Xs

<Xs

<Xs

:element
<Xs:
<Xs:
:element
<XS:
<XS:
:any namespace="##other" processContents="1lax" minOccurs="0" maxOccurs=

element
element

element
element

—"unbounded" />
</Xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<xs:complexType name="ExternalReferenceType">
<Xs:sequence>
<xs:element name="URI" type="xs:anyURI">
<xs:element name="Description" type="xs:string">
</Xs:sequence>
</xs:complexType>
<!-- Simple types -->

<xs:simpleType name="NominalType">

<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="NOMINAL"/>
<xs:enumeration value="CALCULATED"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="EmailType">
<xs:restriction base="xs:string">

<xs:pattern value="[\w\.\-_]+@[\w\.\-_]+"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="PhoneNumberType">
<Xs:sequence>

<xs:element name="CountryCode" type="xs:integer" minOccurs="0">
<xs:element name="AreaCode" type="xs:integer">
<xs:element name="PhoneNumber">

<xs:simpleType>

<Xs:

name="Name" type="xs:string">

name="Description" type="xs:string" minOccurs="0">
name="Town" type="xs:string" minOccurs="0">
name="County" type="xs:string" minOccurs="0">
name="Region" type="xs:string" minOccurs="0">
name="Country" type="xs:string" minOccurs="0">

restriction base="xs:string">
<xs:pattern value="[0-9]+-[0-9]+"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
</Xs:sequence>
<xs:attribute name="description" type="xs:string" use="optional"/>

(continues on next page)

78

Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

</xs:complexType>
<xs:simpleType name="RestrictedStatusType'">
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="open"/>
<xs:enumeration value="closed"/>
<xs:enumeration value="partial"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="UnitsType">
<XSs:sequence>
<xs:element name="Name" type="xs:string">
<xs:element name="Description" type="xs:string" minOccurs="0">
</Xs:sequence>
</xs:complexType>
<xs:complexType name="IdentifierType">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string">
</xs:attribute>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="BaseFilterType">
<Xs:sequence>
<xs:element name="Description" type="xs:string" minOccurs="0">
<xs:element name="InputUnits" type="£fsx:UnitsType'">
<xs:element name="OutputUnits" type="£fsx:UnitsType'">
<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs=
—"unbounded" />
</Xs:sequence>
<xs:attribute name="resourcelId" type="xs:string'">
<xs:attribute name="name" type="xs:string">
<xs:anyAttribute namespace="##other" processContents="1lax"/>
</xs:complexType>
<xs:complexType name="ResponseType'>
<Xs:sequence>
<xs:choice minOccurs="0">
<xs:element name="InstrumentSensitivity" type="fsx:SensitivityType".
—minOccurs="0">
<xs:element name="InstrumentPolynomial" type="£fsx:PolynomialType" minOccurs=
">
</xs:choice>
<xs:element name="Stage" type="fsx:ResponseStageType" minOccurs="0"
maxOccurs="unbounded">
</xs:element>
<xS:any namespace="##other" processContents="1lax" minOccurs="0" maxOccurs=
—"unbounded" />
</Xs:sequence>
<xs:attribute name="resourceId" type="xs:string">
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>
<xs:complexType name="DataAvailabilityExtentType'">

(continues on next page)

5.3. Comparison with StationXML 79

obsinfo, Release 0.110

(continued from previous page)

<xs:attribute name="start" type="xs:dateTime" use="required">
<xs:attribute name="end" type="xs:dateTime" use="required">
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>
<xs:complexType name="DataAvailabilitySpanType'>
<xs:attribute name="start" type="xs:dateTime" use="required">
<xs:attribute name="end" type="xs:dateTime" use="required">
<xs:attribute name="numberSegments" type="xs:integer" use="required">
<xs:attribute name="maximumTimeTear" type="xs:decimal" use="optional">
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>
<xs:complexType name="DataAvailabilityType">
<Xs:sequence>
<xs:element name="Extent" type="fsx:DataAvailabilityExtentType" minOccurs="0"/>
<xs:element name="Span" type="fsx:DataAvailabilitySpanType" minOccurs="0"_
—maxOccurs="unbounded" />
<xXs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs=
—"unbounded" />
</Xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>

5.4 Comparison with AROL/YASMINE

The goals and technologies of obsinfo are similar to those found in YASMINE and the format of the Atomic Response
Object Library (AROL) files used by YASMINE is the very similar to that of the Datalogger, Sensor and Preamplifier
files (and underlying filter files) used by obsinfo. The major differences are: - obsinfo is a completely file-based
solution, designed for processing large

sets of similar instruments. Yasmine is a GUI (YASMINE_EDITOR) or a command-line interface (YAS-
MINE_CLI) to modify existing StationXML files. obsinfo is thus best compared with a combination
of YASMINE_EDITOR (to create a base StationXML file for a given configuration), followed by YAS-
MINE_CLI (to enter station-specific modifications to this configuration)

* obsinfo holds its configuration information inside the instrument component (DataLogger, PreAmplifier, Sensor)
files, whereas AROL has a file for each configuration and uses an accompanying configuration file to choose
between them

* obsinfo adds processing and ocean-bottom seismology specific fields, to facilitate the notation and correction for
clock problems such as drift and leap-seconds.

* obsinfo uses instrumentation’ files to represent specific OBSs
* obsinfo uses network files to control all this

The YASMINE Commmand-line interface (_YASMINE_CLI)

80 Chapter 5. Information files

https://github.com/iris-edu/yasmine-stationxml-editor
https://gitlab.com/resif/arol
https://github.com/iris-edu/yasmine-stationxml-editor
https://github.com/iris-edu/yasmine-stationxml-cli
https://github.com/iris-edu/yasmine-stationxml-cli
https://github.com/iris-edu/yasmine-stationxml-editor
https://github.com/iris-edu/yasmine-stationxml-cli
https://github.com/iris-edu/yasmine-stationxml-cli

obsinfo, Release 0.110

5.4.1 Nomenclature

We use the term “InstrumentComponent” for Dataloggers, Preamplifiers and Sensors.

5.4.2 AROL verus obsinfo configuration methods
Let’s compare the AROL implementation of a Nanometrics Taurus datalogger with that of obsinfo. My AROL example
comes from gitlab/RESIF/AROL/sources/Dataloggers.

The AROL configuration file is called nanometrics.yaml and includes Centaur, Taurus and .. dataloggers. For brevity,
I only include the Taurus loggers:

mandatory_filters: [digitizer_manufacturer, digitizer_model, sampling_rate]

filters:
- name: Digitizer manufacturer
code: digitizer_manufacturer
help: Select the manufacturer of your digitizer

- name: Digitizer model
code: digitizer_model
help: Select the model of your digitizer

- name: Version
code: digitizer_version
help: Select the version of digitizer you have

- name: DC removal on/off
code: dc_removal
help: Is DC removal filter activated or not

- name: Samples per seconds
code: sampling_rate
help: Select the sampling rate for this channel

- name: Frontend gain
code: preamplifier_gain
help: Select the preamplifier gain (frontend)

responses:
- path: nanometrics/TAURUS-G-1.response.yaml
applicable_filters:
digitizer_manufacturer: Nanometrics
digitizer_model: Taurus
preamplifier_gain: Gain 1 (1x - 0dB - 16Vpp)

- path: nanometrics/TAURUS-G-04.response.yaml
applicable_filters:
digitizer_manufacturer: Nanometrics
digitizer_model: Taurus
preamplifier_gain: Gain 0.4 (0.4x - 0dB - 40Vpp)

- path: nanometrics/TAURUS-G-2.response.yaml

(continues on next page)

5.4. Comparison with AROL/YASMINE 81

obsinfo, Release 0.110

(continued from previous page)

applicable_filters:
digitizer_manufacturer: Nanometrics
digitizer_model: Taurus
preamplifier_gain: Gain 2 (1x - 0dB - 8Vpp)

- path: nanometrics/TAURUS.10.response.yaml
applicable_filters:
digitizer_manufacturer: Nanometrics
digitizer_model: Taurus
sampling_rate: 10 sps

- path: nanometrics/TAURUS.40.response.yaml
applicable_filters:
digitizer_manufacturer: Nanometrics
digitizer_model: Taurus
sampling_rate: 40 sps

- path: nanometrics/TAURUS.50.response.yaml
applicable_filters:
digitizer_manufacturer: Nanometrics
digitizer_model: Taurus
sampling_rate: 50 sps

- path: nanometrics/TAURUS.100.response.yaml
applicable_filters:
digitizer_manufacturer: Nanometrics
digitizer_model: Taurus
sampling_rate: 100 sps

- path: nanometrics/TAURUS.200.response.yaml
applicable_filters:
digitizer_manufacturer: Nanometrics
digitizer_model: Taurus
sampling_rate: 200 sps

- path: nanometrics/TAURUS.250.response.yaml
applicable_filters:
digitizer_manufacturer: Nanometrics
digitizer_model: Taurus
sampling_rate: 250 sps

and a few examples of the AROL response files are:

82 Chapter 5.

Information files

obsinfo, Release 0.110

nanometrics/ TAURUS-G-1.response.yaml|

format_version: '0.106'
response:
decimation_info:
correction: true
stages:
- input_units:
name: V
description: Volts
output_units:

name: V

description: Volts
gain:

value: 1.0

frequency: 0.0
filter:

type: ANALOG
name: ' AMPLIFIER_FILTER'
delay: 0.0

extras:
DBIRD_response_type: THEORETICAL
Number_of_zeroes: '0'
Number_of_poles: '0'
notes:
'# Diviseur par 1 en preampli'
- 'Response_type
- "Input_unit
- '"Output_unit
- '"Transfer_normalization_frequency

: THEORETICAL
vV
v
: 0

H*F O R R

optionel’
optionel’
optionel’
optionel’

nanometrics/ TAURUS-G-2.response.yaml

format_version: '0.106'
response:
decimation_info:
correction: true
stages:
- input_units:
name: V
description: Volts
output_units:
name: V
description: Volts
gain:
value: 2.0
frequency: 0.0
filter:
type: ANALOG

(continues on next page)

5.4. Comparison with AROL/YASMINE

83

obsinfo, Release 0.110

(continued from previous page)

name: ' AMPLIFIER_FILTER'
delay: 0.0
extras:
DBIRD_response_type: THEORETICAL
Number_of_zeroes: '0'
Number_of_poles: '0'
notes:
'# Diviseur par 1 en preampli'
- 'Response_type : THEORETICAL
- "Input_unit '
- '"Output_unit v
- 'Transfer_normalization_frequency : 0

#
#
#
#

optionel’
optionel’
optionel’
optionel’

nanometrics/ TAURUS-G-04.response.yaml|

format_version: '0.106'
response:
decimation_info:
correction: true
stages:
- input_units:
name: V
description: Volts
output_units:
name: V
description: Volts
gain:
value: 0.4
frequency: 0.0
filter:
type: ANALOG
name: ' AMPLIFIER_FILTER'
delay: 0.0
extras:
DBIRD_response_type: THEORETICAL
Number_of_zeroes: '0'
Number_of_poles: '0'
notes:
'# Diviseur par 1 en preampli'
- 'Response_type : THEORETICAL
- '"Input_unit vV
- '"Output_unit v
- 'Transfer_normalization_frequency : 0

H H H H

optionel’
optionel’
optionel’
optionel’

84

Chapter 5. Information files

obsinfo, Release 0.110

nanometrics/ TAURUS.100.response.yaml|

format_version: '0.106'
response:
decimation_info:
correction: true
stages:
- input_units: &id00®1
name: V
description: Volts
output_units: &id002
name: counts
description: Digital Counts
gain:
value: 1000012.875
frequency: 0.0
filter:
type: AD_CONVERSION
input_full_scale: "16.777"
output_full_scale: "16777216.000000"
name: ' DIGITIZER'
input_sample_rate: 0.0
output_sample_rate: 30000.000300000003
delay: 0.0
- input_units: *id002
output_units: *id002
filter:
$ref: include/tau_FirSym2_s1_100.filter.yaml#filter
name: ' DECIMATION'
input_sample_rate: 30000.000300000003
output_sample_rate: 2000.0
delay: 0.0
decimation_factor: 15
- input_units: *id002
output_units: *id002
filter:
$ref: include/tau_FirSym2_s2_100.filter.yaml#filter
name: ' DECIMATION'
input_sample_rate: 2000.0
output_sample_rate: 200.0
delay: 0.0
decimation_factor: 10
- input_units: *id002
output_units: *id002
filter:
$ref: include/tau_FirSym2_s3_100.filter.yaml#filter
name: ' DECIMATION'
input_sample_rate: 200.0
output_sample_rate: 100.0
delay: 0.0
decimation_factor: 2
extras:

(continues on next page)

5.4. Comparison with AROL/YASMINE

85

obsinfo, Release 0.110

(continued from previous page)

"THEORETICAL"
'1.0000000e-02"

DBIRD_response_type:
Output_sampling_interval:
notes:
- '"# Generated by G. Cougoulat LGIT '
"# On: 10/25/2010'
"Response_name
"Response_type
"Input_sampling_interval
"Output_sampling_interval
"Input_full_scale
"Output_full_scale
"Sensitivity
'# stage 1 decimation par 15'
"Response_name
"Response_type
"Input_sampling_interval
\/ 1, ="
"Qutput_sampling_interval
'# stage 2 decimation par 10'
"Response_name
"Response_type
"Input_sampling_interval
"Output_sampling_interval
'# stage 3 decimation par 2'
"Response_name
"Response_type
"Input_sampling_interval
"Output_sampling_interval

: DIGITIZER# optionnel"

: THEORETICAL# optionnel”

: O# optionnel "

1 3.3333333e-05# (= 5.10%-4 / 15)

16.777# 16.777 Vpp , gain = 1"
16777216.000000# 2424 "
1000012.875# 1\xB5v"

: DECIMATION# optionnel"
: THEORETICAL# optionnel"
1 3.3333333e-05# 3.0000000e-04# ~ 30000\

5.0000000e-04# 2.0000000e-03# optionnel”

: DECIMATION# optionnel"
: THEORETICAL# optionnel"

5.0000000e-04# 2.0000000e-03"
5.0000000e-03# 2.0000000e-02# optionnel"

: DECIMATION# optionnel"
: THEORETICAL# optionnel"

5.0000000e-03#2.0000000e-02"
1.0000000e-02# optionnel™

nanometrics/TAURUS.200.response.yaml

format_version: '0.106'
response:
decimation_info:
correction: true
stages:
- input_units: &id00®1
name: V

description: Volts
output_units: &id002

name: counts

description: Digital Counts
gain:

value: 1048576.0

frequency: 0.0
filter:

type: AD_CONVERSION

input_full_scale: "16.0"

output_full_scale: "16777216.000000"

(continues on next page)

86

Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

name: ' DIGITIZER'
input_sample_rate: 0.0

output_sample_rate: 30000.000300000003

delay: 0.0

- input_units: *id002
output_units: *id002
filter:

$ref: include/tau_FirSym2_s1_200.filter.yaml#filter

name: ' DECIMATION'

input_sample_rate: 30000.000300000003

output_sample_rate: 2000.0
delay: 0.0
decimation_factor: 15

- input_units: *id002
output_units: *id002
filter:

$ref: include/tau_FirSym2_s2_200.filter.yaml#filter

name: ' DECIMATION'
input_sample_rate: 2000.0
output_sample_rate: 400.0
delay: 0.0
decimation_factor: 5

- input_units: *id002
output_units: *id002
filter:

$ref: include/tau_FirSym2_s3_200.filter.yaml#filter

name: ' DECIMATION'
input_sample_rate: 400.0
output_sample_rate: 200.0
delay: 0.0
decimation_factor: 2

extras:

DBIRD_response_type:
Output_sampling_interval:

notes:

- '"# Generated by G. Cougoulat LGIT '

- "# On: 10/25/2010'

"Response_name
"Response_type
"Input_sampling_interval
"Output_sampling_interval
"Input_full_scale
"Output_full_scale
"Sensitivity

'# stage 1 decimation par 15'
"Response_name
"Response_type
"Input_sampling_interval
\/ 1, ="
"OQutput_sampling_interval

'# stage 2 decimation par 5'
"Response_name

"THEORETICAL"
'5.0000000e-03"

: DIGITIZER# optionnel"

: THEORETICAL# optionnel”

: O# optionnel "

: 3.3333333e-05# (= 5.104-4 / 15) "

16.0# 16 Vpp , gain = 1"
16777216.000000# 2424 "
1048576.0# 1\xB5v"

: DECIMATION# optionnel"
: THEORETICAL# optionnel"
1 3.3333333e-05# 3.0000000e-04# ~ 30000\

5.0000000e-04# 2.0000000e-03# optionnel”

: DECIMATION# optionnel"

(continues on next page)

5.4.

Comparison with AROL/YASMINE

87

obsinfo, Release 0.110

(continued from previous page)

- "Response_type : THEORETICAL# optionnel”

- "Input_sampling_interval : 5.0000000e-04# 2.0000000e-03"

- "Output_sampling_interval 1 2.5000000e-03# 2.0000000e-02# optionnel"
- '"# stage 3 decimation par 2'

- "Response_name : DECIMATION# optionnel"

- "Response_type : THEORETICAL# optionnel"

- "Input_sampling_interval 1 2.5000000e-03#2.0000000e-02"

- "Output_sampling_interval : 5.0000000e-03# optionnel"”

In obsinfo, we would have 2 choices for implementing the two choices here: sampling rate and gain: 1) put the gain
into a “preamplifier” file and the “sampling rate” into a

datalogger file
2) put both in a datalogger file

The second is more complicated but also easier to directly translate from AROL and expandable to other configuration
dimensions such as the choice between minimum phase and linear phase filtering, or the implementation of a DC
removal filter. We show this option below.

First, we would break the different stages into their own files:
tau_DIGITIZER.100.stage.yaml .. code-block:: yaml
— format_version: ‘0.110 stage:
¢ input_units: &id001 name: V description: Volts
output_units: &id002 name: counts description: Digital Counts
gain: value: 1000012.875 frequency: 0.0

filter: type: AD_CONVERSION input_full_scale: “16.777° output_full_scale:
“16777216.000000”

name: ‘ DIGITIZER’ input_sample_rate: 0.0 output_sample_rate: 30000.000300000003 delay: 0.0
tau_DIGITIZER.200.stage.yaml .. code-block:: yaml
— format_version: ‘0.110 stage:
* input_units: &id001 name: V description: Volts
output_units: &id002 name: counts description: Digital Counts
gain: value: 1000012.875 frequency: 0.0

filter: type: AD_CONVERSION input_full_scale: “16.777° output_full_scale:
“16777216.000000”

name: ‘ DIGITIZER’ input_sample_rate: 0.0 output_sample_rate: 30000.000300000003 delay: 0.0

tau_FirSym2_s1_100.stage.yaml .. code-block:: yaml
— format_version: ‘0.110” stage:
e input_units: *id002 name: counts description: Digital Counts

output_units: *id002 name: counts description: Digital Counts

filter: $ref: include/tau_FirSym2_s1_100.filter.yaml#filter

name: ‘ DECIMATION’ delay: 0.0 decimation_factor: 15
tau_FirSym2_s2_100.stage.yaml .. code-block:: yaml

88 Chapter 5. Information files

obsinfo, Release 0.110

— format_version: ‘0.110 stage:

* input_units: *id002 name: counts description: Digital Counts
output_units: *id002 name: counts description: Digital Counts
filter: $ref: include/tau_FirSym2_s2_100.filter.yaml#filter
name: ‘ DECIMATION’ delay: 0.0 decimation_factor: 10

tau_FirSym2_s3_100.stage.yaml .. code-block:: yaml
— format_version: ‘0.110’ stage:

e input_units: *id002 name: counts description: Digital Counts
output_units: *id002 name: counts description: Digital Counts
filter: $ref: include/tau_FirSym2_s3_100.filter.yaml#filter
name: ‘ DECIMATION’ delay: 0.0 decimation_factor: 2

Notice that we lost the sampling rates and had to specify the units in each file rather than using YAML anchors. Here
is the modified 100 sps datalogger file:

format_version: '0.110'
datalogger:
sample_rate: 100
correction: true
stages:
- {$ref: 'tau_DIGITIZER.stage.yaml#stage'}
- {$ref: 'tau_FirSym2_sl.stage.yaml#stage'}
- {$ref: 'tau_FirSym2_s2.stage.yaml#stage'}
- {$ref: 'tau_FirSym2_s3.stage.yaml#stage'}

This file is ALMOST AROL-compatible, except that
¢ the output sample_rate is specified
* response is renamed datalogger and can include equipment (where is this in AROL?)
* stages is renamed stages (change in v0.1117).
* correction is not under decimation_info (change in v0.1117?)

Many of these differences come from our “flattening” of the StationXML Response, should we move back for compat-
ibility?

We can add one of the gains as well, here before the digitizer:

format_version: '0.110'
datalogger:
sample_rate: 100
correction: true
stages:
- {$ref: "TAURUS-G-1.response.yaml#response/stage"}
- {$ref: 'tau_DIGITIZER.stage.yaml#stage'}
- {$ref: 'tau_DIGITIZER.stage.yaml#stage'}
- {$ref: 'tau_FirSym2_sl.stage.yaml#stage'}

(continues on next page)

5.4. Comparison with AROL/YASMINE 89

obsinfo, Release 0.110

(continued from previous page)

- {$ref: 'tau_FirSym2_s2.stage.yaml#stage'}
- {$ref: 'tau FirSym2_s3.stage.yaml#stage'}

Now, putting configurations inside the Datalogger file we have:

format_version: '0.110'
datalogger:
sample_rate: 100
correction: true
stages:
- {$ref: "TAURUS-G-1.response.yaml#response/stage"}
- {$ref: 'tau_DIGITIZER.stage.yaml#stage'}
- {$ref: 'tau_DIGITIZER.stage.yaml#stage'}
- {$ref: 'tau_FirSym2_sl.stage.yaml#stage'}
- {$ref: 'tau_FirSym2_s2.stage.yaml#stage'}
- {$ref: 'tau_FirSym2_s3.stage.yaml#stage'}
configuration_default: '100sps_G1'
configuration_definitions:

"100sps_G1":
configuration_description: "100 sps, gain=1"
"100sps_G2":
configuration_description: "100 sps, gain=2"
stages:

- {$ref: "TAURUS-G-2.response.yaml#response/stage"}
- {$ref: 'tau_DIGITIZER.100.stage.yaml#stage'}
- {$ref: 'tau FirSym2_s1_100.stage.yaml#stage'}
- {$ref: 'tau_FirSym2_s2_100.stage.yaml#stage'}
- {$ref: 'tau FirSym2_s3_100.stage.yaml#stage'}
"100sps_GO4":
configuration_description: "100 sps, gain=0.4"
stages:
- {$ref: "TAURUS-G-04.response.yaml#response/stage"}
- {$ref: 'tau_DIGITIZER.100.stage.yaml#stage'}
- {$ref: 'tau FirSym2_s1_100.stage.yaml#stage'}
- {$ref: 'tau FirSym2_s2_100.stage.yaml#stage'}
- {$ref: 'tau FirSym2_s3_100.stage.yaml#stage'}
"200sps_G1":
sample_rate: 200
configuration_description: "200 sps, gain=1"
stages:
- {$ref: "TAURUS-G-1.response.yaml#response/stage"}
- {$ref: 'tau DIGITIZER.200.stage.yaml#stage'}
- {$ref: 'tau FirSym2_s1_200.stage.yaml#stage'}
- {$ref: 'tau FirSym2_s2_200.stage.yaml#stage'}
- {$ref: 'tau FirSym2_s3_200.stage.yaml#stage'}
"200sps_G2":
sample_rate: 200
configuration_description: "200 sps, gain=2"
stages:
- {$ref: "TAURUS-G-2.response.yaml#response/stage"}
- {$ref: 'tau_DIGITIZER.200.stage.yaml#stage'}

(continues on next page)

90 Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

- {$ref: 'tau_FirSym2_s1_200.stage.yaml#stage'}
- {$ref: 'tau_FirSym2_s2_200.stage.yaml#stage'}
- {$ref: 'tau FirSym2_s3_200.stage.yaml#stage'}
"200sps_GO4":
sample_rate: 200
configuration_description: "200 sps, gain=0.4"
stages:
- {$ref: "TAURUS-G-04.response.yaml#response/stage"}
- {$ref: 'tau_DIGITIZER.200.stage.yaml#stage'}
- {$ref: 'tau_FirSym2_s1_200.stage.yaml#stage'}
- {$ref: 'tau_FirSym2_s2_200.stage.yaml#stage'}
- {$ref: 'tau FirSym2_s3_200.stage.yaml#stage'}
extras:
DBIRD_response_type: "THEORETICAL"
Output_sampling_interval: '1.0000000e-02"'

This is not the best example, as the Taurus appears to use different FIRs for each sampling rate: in many cases we can
further reduce repetion by giving the same FIRs for different sampling rates, simply adding FIRs to account for the
different sampling rates (e.g. CS5321 converters) or having a different sampling rate for the first stage (e.g. AD128*
converters). One of the advantages is that we only specify a given FIR (or IIR) sequence once in the hierarchy

5.4.3 Converting obsinfo files to AROL

This should be fairly straightforward via a program that “explodes” an InstrumentCompoennt file into individual files
and an AROL-style configuration file.

5.4.4 Converting AROL files to obsinfo

It may be possible to write a routine that combines a given set of files into an obsinfo file with different configurations,
although there would be much repetition in this file.

5.4.5 Directly using AROL files in obsinfo

For now, this is not directly possible because of the lack of configuration information in the AROL InstrumentCompo-
nent files. See below for converting AROL files to obsinfo

Another, more complicated option would be to allow obsinfo to read AROL-style configuration files ($arol operator
instead of $ref?), but the top-level configuration would have to allow several fields for the configuration

5.5 Examples

Examples of information files, from the most basic to the most complete.

5.5. Examples 91

obsinfo, Release 0.110

5.5.1 Basic - two channel

Here is an example of a valid information file containing only required fields, all in one file. To save space, this is a
two-channel instrument. Generally, to save space and avoid repetition, information files are split into parts connected
by JSON references: in the next secton you will find the same information as below, but spit into “atomic” files.

The file below can be found in obsinfo/_examples/Information_Files/subnetworks/EXAMPLE_essential_noRefs.subnetwork.yaml

format_version: "0.111"

revision:
authors:
- names: ["Wayne Crawford"]
agencies: ["IPGP", "CNRS"]
emails: ["crawford@ipgp.fr"]
phones: ["+33 01 83 95 76 63"]
date: "2019-12-19"
subnetwork:
operators:
- agency: "INSU-IPGP OBS operator"
contacts:
names: ["Wayne Crawford"]
emails: ["crawford@ipgp.fr", "parc-obs@services.cnrs.fr"]
phones: ["+33 (0)6 51 51 10 54"]
names: ["Romuald Daniel"]
website: "http://parc-obs.insu.cnrs. fr"
network:
code: "4G"

name: "EMSO-AZORES"
start_date: "2007-07-01"
end_date: "2025-12-31"
description: "Local seismological network around the summit of Lucky Strike.,
—volcano"
comments:
- "Lucky Strike Volcano, North Mid-Atlantic Ridge"
stations:
"BB_1":
site: "My favorite site"
start_date: "2011-04-23T10:00:00"
end_date: "2011-05-28T15:37:00"
location_code: "00"
locations:
"00":
base:
depth.m:
geology: "unknown"
vault: "Sea floor"
uncertainties.m: {lon: 20, lat: 20, elev: 20}
measurement_method: "Short baseline transponder, near-seafloor.,
—release"
position: {lon: -32.234, lat: 37.2806, elev: -1950}
instrumentation:

(continues on next page)

92 Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

base: "INSU_BBOBS"
configuration: "SNO7"

modifications:
datalogger: {configuration: "62.5sps"}
processing:
- clock_correction_linear:
base:

instrument: "Seascan MCX0, ~le-8 nominal drift"

reference: "GNSS"

start_sync_instrument: 0
start_sync_reference: "2015-04-23T11:20:00"
end_sync_reference: "2016-05-27T14:00:00.2450"
end_sync_instrument: "2016-05-27T14:00:00"

5.5.2 Basic atomic - two channel

Here is an example of a the same information as in basic_flat, divided across the standard obsinfo file structure. You
can see that there are many fewer lines and less repetition.

The file below can be found in obsinfo/_examples/Information_Files/subnetworks/EXAMPLE_essential.subnetwork.yaml,
, with configuration definitions removed for simplicity. To see what configuration definitions can do, see the ba-
sic_configuration document. The referenced files are found below obsinfo/_examples/Information_Files/.

format_version: "0.111"
revision:
authors:
- {$ref: "persons/Wayne_Crawford.person.yaml#person"}
date: "2019-12-19"
subnetwork:
operators:
- {S$ref: "operators/INSU-IPGP.operator.yaml#operator"}
network:
$ref: "networks/EMSO-AZORES.network.yaml#network"
stations:
"BB_1":
site: "My favorite site"
start_date: "2011-04-23T10:00:00"
end_date: "2011-05-28T15:37:00"
location_code: "00"
locations:
"00":
base: {$ref: 'location_bases/INSU-IPGP.location_base.yaml#location_
—base'}
configuration: "BUC_DROP"
position: {lon: -32.234, lat: 37.2806, elev: -1950}
instrumentation:
base: {$ref: "instrumentations/BBOBS1_pre2012.instrumentation_base.yaml
—#instrumentation_base"}
configuration: "SNO7"
modifications:

(continues on next page)

5.5. Examples 93

obsinfo, Release 0.110

(continued from previous page)

datalogger: {configuration: "62.5sps"}
processing:
- clock_correction_linear:
base: {$ref: "timing_bases/Seascan_GNSS.timing_base.yaml#timing_
—base"}

start_sync_reference: "2015-04-23T11:20:00"

end_sync_reference: "2016-05-27T14:00:00.2450"
end_sync_instrument: "2016-05-27T14:00:00"

5.5.3 Basic atomic + configuration - two channel

Using the same basic instrumentation as above, here is an example of configuration, which allows us to:
* change instrument components from the default (sensors, preamplifiers, dataloggers)

* modify parameters of one or more instrument components (serial numbers, response stage, datalogger sampling
frequency and/or digital filter)

The subnetwork file shown below is found in Information_Files/subnetwork/EXAMPLE_essential.
subnetwork.yaml and the other information files are found in the Information_Files hierarchy

format_version: "0.111"
revision:
authors:
- {$ref: "persons/Wayne_Crawford.person.yaml#person"}
date: "2019-12-19"
subnetwork:
operators:
- {$ref: "operators/INSU-IPGP.operator.yaml#operator"}
network:
$ref: "networks/EMSO-AZORES.network.yaml#network"
stations:
"BB_1":
site: "My favorite site"
start_date: "2011-04-23T10:00:00"
end_date: "2011-05-28T15:37:00"
location_code: "00"
locations:
"00":
base: {$ref: 'location_bases/INSU-IPGP.location_base.yaml#location_
—base'}
configuration: "BUC_DROP"
position: {lon: -32.234, lat: 37.2806, elev: -1950%}
instrumentation:
base: {$ref: "instrumentation_bases/BBOBS1_pre2012.instrumentation_base.
wyaml#instrumentation_base"}
configuration: "SN®3"
datalogger_configuration: "250sps"”
processing:
- clock_correction_linear:
base: {$ref: "timing_bases/Seascan_GNSS.timing_base.yaml#timing_
base"}

(continues on next page)

94 Chapter 5. Information files

obsinfo, Release 0.110

(continued from previous page)

start_sync_reference: "2015-04-23T11:20:00"
end_sync_reference: "2016-05-27T14:00:00.2450"
end_sync_instrument: "2016-05-27T14:00:00"
"BB_2":
notes: ["example of deploying with a different sphere"]
site: "My other favorite site"
start_date: "2015-04-23T10:00:00Z"
end_date: "2016-05-28T15:37:00Z"
location_code: "00"
locations:
"00":
base: {$ref: 'location_bases/INSU-IPGP.location_base.yaml#location_
—base'}
configuration: "ACOUSTIC_SURVEY"
position: {lon: -32.29756, lat: 37.26049, elev: -1887}
instrumentation:
base: {$ref: "instrumentation_bases/BBOBS1_2012+.instrumentation_base.
—yaml#instrumentation_base"}
configuration: "SNO6"
datalogger_configuration: "125sps"”
channel_modifications:

"1-*": {sensor: {configuration: "Sphere08"}}
"2-*": {sensor: {configuration: "Sphere08"}}
"Z-*": {sensor: {configuration: "Sphere08"}}
"H-*": {sensor: {configuration: "5004"}}
processing:

- clock_correction_linear:
base: {$ref: "timing_bases/Seascan_GNSS.timing_base.yaml#timing_
—base"}
start_sync_reference: "2015-04-22T12:24:00"
end_sync_reference: "2016-05-28T15:35:00.3660"
end_sync_instrument: "2016-05-28T15:35:02"

5.5. Examples 95

obsinfo, Release 0.110

96 Chapter 5. Information files

CHAPTER

SIX

6.1 Introduction

DATACITE INFORMATION FILES

datacite information files are used to allow the principal scientist to provide information for DOI datacite files. The
DataCite standard is described at https://schema.datacite.org/meta/kernel-4.3/ and there are some tools for directly
creating Datacite files, such as https://github.com/claudiodsf/datacite-metadata-generator

The datacite information files simplify entering values for principal scientists, by proposing a limited but usually suf-
ficient list of fields and values for these fields, as shown below.

One of the simplifications is that only a few identifier schemes are proposed: ORCID for people and ROR or GRID for
organizations. To find the ROR URI for your organization, you can go to https://ror.org and search for your organization,
or just do a web search on “{your institution} ROR”

The fields provided are:
Name # Type Description
title 1 string Title for the experiment
description 1 string Description of the experiment
creators 1 list of Entity List of authors (Entity objets), in publication order
subjects 1 list of string Keywords |
contributors 1 object
* data_collectors’ 1 list of Entity Data collectors not in creators (engineers, scientists)
* project_leader 0-1 | Entity use only if not the same as the first creator
* project_members™ | 0-1 | list of Entity Participants not in creators or data_collectors
related_identifiers 0-1 | list of Relldent | Things like articles, other DOISs, etc
place 1 string The experiment location
Sfunders 0-1 | list of Funder | Experiment funders
6.1.1 Entity

describes people or organizations in the lists of creators or contributors:

97

https://schema.datacite.org/meta/kernel-4.3/
https://github.com/claudiodsf/datacite-metadata-generator
https://ror.org

obsinfo, Release 0.110

Name # Type | Description

name 1 string | “family, given” if Personal name

type 0-1 | string | ‘Organization’, if not a Personal name

identifier 0-1 | string | affiliation unique identifier (i.e. ‘https://orcid.org/0000-0002-3260-1826") |
scheme 1 string | identifier scheme, required if identifier provided (i.e. ‘ORCID’)

affiliations | 0-1 | list list of affiliations

* name’ 1 string | affiliation name (i.e ‘IPGP’)

*identifier” | 0-1 | string | affiliation unique identifier (i.e. ‘https:/ror.org/004gzgz66)

* scheme® 1 string | identifier scheme, required if identifier provided (i.e. ‘ROR”)

6.1.2 Relldent

describes related identifiers, such as DOIs and articles

Name # | Type Description

identifier | 1 | string affiliation unique identifier (i.e. ‘https://orcid.org/0000-0002-3260-1826) |
scheme 1 | sc_string_ | identifier scheme

relation 1 | rel_string_ | relation between the identifier and the current datacite:

An sc_string is a string chosen from: ARK arXiv bibcode DOI EAN13 EISSN Handle IGSN ISBN ISSN ISTC LISSN
LSID PMID PURL UPC URL URN w3id

A rel_string is a string chosen from: IsCitedBy Cites IsSupplementTo IsSupplementedBy IsContinuedBy Continues
IsDescribedBy Describes HasMetadata IsMetadataFor HasVersion IsVersionOf IsNew VersionOf IsPreviousVersionOf
IsPartOf HasPart IsPublishedIn IsReferencedBy References IsDocumentedBy Documents IsCompiledBy Compiles
IsVariantFormOf IsOriginalFormOf IsIdenticalTo IsReviewedBy Reviews IsDerivedFrom IsSourceOf IsRequiredBy
Requires IsObsoletedBy Obsoletes

6.1.3 Funder

describes funders

Below is an example datacite information file from _examples/datacite/EMSO-MOMAR_OBS.datacite.yaml

format_version: "0.110"

datacite:
title : EMSO-MOMAR
description : "Seismology component of a multi-year multidisciplinary
geophysical observatory on Lucky Strike volcano,
Mid-Atlantic Ridge (37°N, 32°W)"
creators:

- name : Cannat, Mathilde
identifier: https://orcid.org/0000-0002-5157-8473
scheme: ORCID

- name : Crawford, Wayne
identifier: https://orcid.org/0000-0002-3260-1826
scheme: ORCID

- name : IPGP Marine Geosciences Team
type : Organization
affiliations :

(continues on next page)

98 Chapter 6. Datacite information files

https://orcid.org/0000-0002-3260-1826
https:/ror.org/004gzgz66
https://orcid.org/0000-0002-3260-1826

obsinfo, Release 0.110

(continued from previous page)

- name: IPGP
identifier: https://ror.org/0049zqz66
scheme : ROR
subjects :
- Mid-ocean ridge volcanos
- Hydrothermal fields
dates_collected: 2007-07-18/2022-08-24
contributors:
data_collectors:
- name: Daniel, Romuald
affiliations:
- name: INSU-IPGP OBS Facility
- name: Besancon, Simon
affiliations:
- name: INSU-IPGP OBS Facility
- name: INSU-IPGP OBS Facility
type: Organization
identifier: "Need to make an ROR for the facility"
scheme: ROR
project_members:
- name: Bohidar, Soumya
affiliations:
- name: IPGP
related_identifiers:
- identifier: www.doi.org/1234567
scheme: DOI
relation: HasMetadata
place: Lucky Strike volcano, Mid-Atlantic Ridge
funders:
- name: ANR
identifier: https://ror.org/00rbzpz17
scheme: ROR
award_URI: https://anr.fr/Project-ANR-14-CE02-0008
award_title: "Magma chamber to micro-habitats : dynamics of deep sea
hydrothermal ecosystems - LuckyScales"

6.1. Introduction 99

obsinfo, Release 0.110

100 Chapter 6. Datacite information files

CHAPTER
SEVEN

ADVANCED

7.1 Base-configuration-modifications

7.1.1 Base-configuration-modifications

Overview

The full power of obsinfo is achieved using the base-configuration-modifications protocol. OBS are subject to many
variations in configuration, including changes of components in the field. The aim of obsinfo is to have a relatively
stable database of information files for instrumentation, but also to account for reassembling the in the field instrumen-
tation, substituting stages and even whole components. This must be reflected in the metadata without compromising
the stability of the instrumentation database. The way to do this is through the base-configuration-modifications
nomenclature, which can change any attribute in the configuration, down to serial numbers or pole/zeros of filters at
the channel level.

The configuration element allows pre-configured customization of instrumentation. It is also used to reduce repe-
tition when specifying station locations and clock drifts.

instrument_components: datalogger, sensor and preamplifier elements all have the same structure and are
specified at the same level. In the following, we refer to them collectively as instrument_components

Structure
Basic

All base-configuration-modifications elements can have these elements:

base: <file reference>
configuration: <string>
modifications: <element>

Only base is required

101

obsinfo, Release 0.110

Max structure

Here are all the possible elements (you’ll never get them all together):

base: <file reference>
configuration: <string>
modifications: <element>
channel-modifications: <element>
response-modifications: <element>
<shortcutl>:

<shortcutN>:
<non-basel>:

<non-baseN>:

The order of priority is: non-base > stage_modifications > channel-modifications > shortcuts >
modifications > configuration > base

only base and the <non-base> elements (if they exist) are required

Each element explained
base

The base element defines the default parameters and optional configurations. It is generally located in another file and
has the following structure:

<base-elementl>: <element>
<base-element2>: <element>

configuration_default: <string>
configurations:
"<CONFIG1>":
<base-elementX>:
<base-elementY>:

configuration_description: <string>
"<CONFIG2>":

The values under the chose configuration will update the same elements in the base definition. This is a safe update: if,
for example, a dictionary is entered, but not all of its elements, only the specified elements will be changed. Similarly,
if an array is specified, only the corresponding indices will be changed, and only the specified elements within these
corresponding indices. This gives a lot of flexibility: for example, if you have a 5-element stages array and you specify
a l-element stages array in the specified configuration, only the first element will be changed and only those specified
subelements will be changed (this is useful for changing gains). Also, if you specify a 7-element stages array then
two stages will be added, which is useful for dataloggers which have a different number of stages depending on the
sampling rate. But, if you are intending to completely wipe out the existing stage information you have to provide a
complete stage description, as anything left over will be retained. Also, there is no way to reduce the number of stages,
so your default configuration should have the least number of stages possible.

102 Chapter 7. Advanced

obsinfo, Release 0.110

It would be nice to allow the user to wipe out an existing set of stages, but I don’t know how to and keep the possibility
of just changing a few values. Also, as there are no “‘stage_modifications " in “‘configurations"" (and it would be
complicated to add them) I don’t know how else to change a single value like “gain” in a single stage

configuration

Allows you to chose one of the configurations specified in the base element
“[config: configuration_description]” is appended to the end of:
e equipment:description (for instrumentation, sensor, preamplifier and datalogger)

* stage:name

modifications

The elements in modifications override elements specified in base . Under modifications the user can specify
a complete hierarchy down to the lowest level. In general, only the value(s) specified will be modified. So if a “leaf”
value is changed, such as gain value, only the gain value for a particular stage will be changed. If you want to replace
the entire element, precede the key the character “A”. This is useful if you want to swap out a sensor, for example,
without risking retaining some of the original sensor’s values/configurations. This only works with channel sub-
elements: Adatalogger, Asensor, *orientation, Apreamplifier, Aidentifiers, *external_references,
Acomments, Aextras

<non-base>

<non-base> elements are only specified at the top level, not in the base. These are values that we will ALWAYS want
to specify in the subnetwork file. They are:

e location:position
e clock_correction_linear:start_sync_reference
e clock_correction_linear:end_sync_reference

e clock_correction_linear:end_sync_instrument

<shortcut>

Shortcuts to commonly-changed parameters. Existing shortcuts are:

7.1. Base-configuration-modifications 103

Shortcut Standard \
instrumentation:serial_number instrumentation:modifications:equipment:serial_number
instrumentation:datalogger_configuratjiamstrumentation:modifications:datalogger:configuration
datalogger:serial_number datalogger:modifications:equipment:serial_number
sensor:serial_number sensor:modifications:equipment:serial_number
preamplifier:serial_number preamplifier:modifications:equipment:serial_number

obsinfo, Release 0.110

channel-modifications

Limit modifications to selected channels. See channel_modifications for details.

response-modifications

Limit modifications to selected response stages. See stage_modifications for details.

elements using base-configuration-modifications

Here is a list of each element using the base-configuration-modifications structure, each with its required or particular
top-level elements (the always-available but optional configuration and modification elements are not shown):

e instrumentation

instrumentation:
base: <instrumentation_base file>
serial_number: <str> # shortcut

datalogger_configuration: <str> # shortcut
channel-modifications: <element>

* instrument_component (datalogger, sensor, or preamplifier)

instrument_component:
base: <instrument_component_base file>
serial_number: <str> # shortcut
response-modifications: <element>

¢ stage

stage:
base: <stage_base file>

¢ locations

locations:
<location_code>:
base: <location_base file>
position: {lat: <float>, lon: <float>, elev: <float>} # <non-base>
<location_code>:

e clock_correction_linear”

clock_correction_linear:
base: <timing_base file>

start_sync_reference: <ISOtime string> # <non-base>
end_sync_reference: <ISOtime string> # <non-base>
end_sync_instrument: <ISOtime string> # <non-base>

104 Chapter 7. Advanced

obsinfo, Release 0.110

Multi-level, multi-stage elements

Level-based priority

The instrumentation element has instrument_components as sub-elements, which themselves have stages
as sub-elements. Elements specified at a higher level override those at a lower level (instrumentation >
instrument_components > stage). A higher-level configuration will not override lower-level modifications,
so be sparing in the use of modifications at the instrument_components and stage levels. A higher-level base will
cancel all lower-level configuration and modifications, as those were set for another base

Channel_modifications

The element channel_modifications is used to select a channel or channels upon which to apply modificiations.

Specifying the channel to change

Channel identification is performed by an orientation-location code of the form:

"<orientation code>-<location code>"

For example,

n7_g2"

The orientation codes are defined as in the FDSN standard. If the location code is omitted, a location code of “00” is
assumed. You can select all channels using “*” (although you could simply use modifications for this):

Code Result

*or *-* | All channels

*-00 All orientations with location “00”

H-* Channel with orientation code H and all locations
Channel with orientation code H and location “00”

1-01 Channel with orientation code 1 and location “01”

Orientation-location codes have priorities. The more specific code takes precedence over the less specific code, and
the orientation code specification takes precedence over the location code specification. For example, if *-* and 1-01
are specified, 1-01 takes precedence for channels with orientation code 1 and location code 01. And if *-80 and H-*
are specified, H-* takes precedence for channels with orientation code H.

Specifying an element to change

The elements under a given orientation-location code can be:
¢ datalogger
* sensor
e preamplifier

e orientation

7.1. Base-configuration-modifications 105

obsinfo, Release 0.110

The first three allow you to change elements of one of these instrument components, and/or the entire instrument
component, while orientation lets you change the orientation.

The first three can be filled with any valid entities of their parent entity, plus any of following keywords:
* base: replaces the instrument component before applying the other entities.
* configuration: applies the configuration specified in the instrument component’s configurations field
* modifications, within which you can speficy a change to any subelement
e serial_number, a shortcut for {modifications: equipment: {serial_number: }}}.
* stage_modifications, which allow you to change parameters in individual stages

For example, if you want to specify the sensor’s serial number you could enter:

sensor:
modifications:
equipment: {serial_number: 'A1542'}
or
sensor:

serial_number: 'A1542'

If you do both, the shortcut will overwrite the long version and you should get a warning.

If you want to change the type of sensor, specify its serial number and use a custom configuration, you could enter:

sensor:
base: {$ref: 'sensors/T240.nanometrics.sensor.yaml#sensor’'}
configuration: "SINGLE-SIDED"
serial_number: '235'

stage_modifications

Since stages have no name, they are referenced by their number, which specifies the order of the stage (starting at
1) within a given instrument component (sensor, preamplifier’ or datalogger). Modifications to stages are
specified using the keyword stage_modifications.

If we want to change the gain the third stage of the sensor, the hierarchy would look like this:

channel_modifications:
"H-00":
sensor:
stage_modifications:
"2": {gain: {value: 17}}

If we wanted to replace all of the response stages, the file would look like this:

channel_modifications:
"H-00":
datalogger:
stages:
- $ref: "responses/CS5321_FIR1.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"

(continues on next page)

106 Chapter 7. Advanced

obsinfo, Release 0.110

(continued from previous page)

- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR3.stage.yaml#stage"

Response modifications are very flexible. The label can be any of several regular expressions. Either a single
number, as above, a list, a range or the wildcard “*”. Again, you could just use modifications instead of
stage_modifications:"*", although the stage_modifications version is higher priority.

Stage Number | Result

* All stages

[1,3] Stages 1 and 3
[1-4] Stages 1, 2, 3 and 4

7.1.2 Abstract examples

The following examples don’t use real _obsinfo_ structures, but their simplicity may help you to understand the basic
concepts.

Priority levels

base:
paraml: 'A’
param2: 'A’
param3: 'A’
param4: 'A'
param5: 'A’

configuration_default: 'CONFIGA'
configuration_definitions:

'CONFIGA':
configuration-description: "The standard configuration"
'CONFIGB':
configuration-description: "The B definition"
paraml: 'B’
param2: 'B'
configuration: "CONFIGB"
modifications:
param2: 'C'
param3: 'C'
will return :
paraml: 'B'
param2: 'C'
param3: 'C'
param4: 'A’
param5: 'A’

because the configuration CONFIGB overrides the base values of paraml and param2, then the modifications param2
and param3 override the result.

7.1. Base-configuration-modifications 107

obsinfo, Release 0.110

Only specified sub-elements are changed

base:
paraml:
sub-paraml: 'A’
sub-param2: 'A’
modifications:
paraml: {sub_paraml: 'C'}

will return:

paraml:
sub-paraml: 'C'
sub-param2: 'A’

and so on for deeper levels.

Multi-level priorities

Modifications > configuration > base priority

base:
paramAl:
base:
paramBl: 'A’
paramB2: 'A'
configuration_default: 'CONFIGX'
configuration_definitions:
'CONFIGX':
configuration-description: "The standard configuration"
'CONFIGY':
configuration-description: "The Y definition"
paramBl: 'D’
paramB2: 'D'
'CONFIGZ':
configuration-description: "The Z definition"
paramBl: 'E’
paramB2: 'E’
configuration: "CONFIGY"
modifications:
paramB2: 'C'
paramA2: 'A’

configuration_default: 'CONFIGA'
configuration_definitions:

"CONFIGA':
configuration-description: "The standard configuration"
'CONFIGB':
configuration-description: "The B definition"
paramAl:
paramBl: 'B'
paramA2: 'B'

configuration: "CONFIGB"

(continues on next page)

108 Chapter 7. Advanced

obsinfo, Release 0.110

(continued from previous page)

modifications:
paramAl:
configuration: 'CONFIGZ'
paramB2: 'F'
paramA2: 'C'

will return :

paramAl:
paramBl: 'E’
paramB2: 'F’

paramA2: 'C'

because the top-level configuration of paramA1 (“CONFIGZ”) overrides the lower level configuration (‘CONFIGY’)a
nd in turn overriden by the modification of paramB?2 at the same level. This looks complicated, but it is much clearer
in a typical information file, since each base definition is in a seperate file.:

base: {$ref: "higher_level_base.yaml#higher_level_base"}
configuration: "CONFIGB"

modifications:
paramAl:
configuration: 'CONFIGZ'
paramB2: 'F'
paramA2: 'C'

and so we immediately see what is changed from the values in the base specification files

stage_modifications > channel_modifications > modifications

As complicated as it gets

Here should be multi-level example with channel-modifications and response-modifications.

Point out that this is much more complicated than anyone will see because the lower levels are in separate files.
7.1.3 Concrete examples

Specifying a datalogger’s sampling rate

base configuration in the datalogger_base file

datalogger_base:

equipment:
model: "CS5321/22"
type: "delta-sigma A/D converter + digital filter"
description: "CS5321/22 A/D converter + digital filter"
manufacturer: "Cirrus Logic"
vendor: "various"

configuration_default: "125sps”

stages:
- {base: {$ref: "dataloggers/stages/CS5321_FIR1.stage_base.yaml#stage_base"}}

(continues on next page)

7.1. Base-configuration-modifications 109

obsinfo, Release 0.110

(continued from previous page)

{base:
{base:
{base:
{base:
{base:
{base:
{base:
{base:

sample_rate:

{$ref:
{$ref:
{$ref:
{$ref:
{$ref:
{$ref:
{$ref:
{$ref:
125

correction: 0.232
configurations:
"125sps":

configuration_description: "125 sps"”
"250sps":
configuration_description: "250 sps"
sample_rate: 250
correction: 0.116

"dataloggers/stages/CS5322_FIR2.
"dataloggers/stages/CS5322_FIR2.
"dataloggers/stages/CS5322_FIR2.
"dataloggers/stages/CS5322_FIR2.
"dataloggers/stages/CS5322_FIR2.
"dataloggers/stages/CS5322_FIR2.
"dataloggers/stages/CS5322_FIR2.
"dataloggers/stages/CS5322_FIR3.

stage_base
stage_base
stage_base
stage_base
stage_base
stage_base
stage_base
stage_base

.yaml#stage_base"}}
.yaml#stage_base"}}
.yaml#stage_base"}}
.yaml#stage_base"}}
.yaml#stage_base"}}
.yaml#stage_base"}}
.yaml#stage_base"}}
.yaml#stage_base"}}

stages:
- {base: {$ref: "dataloggers/stages/CS5321_FIR1l.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR2.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR2.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR2.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR2.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR2.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR2.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR3.stage_base.yaml#stage_
—base"}}
"500sps":
configuration_description: "500 sps"
sample_rate: 500
correction: 0.058
stages:
- {base: {$ref: "dataloggers/stages/CS5321_FIR1l.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR2.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR2.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR2.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR2.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR2.stage_base.yaml#stage_
—base"}}
- {base: {$ref: "dataloggers/stages/CS5322_FIR3.stage_base.yaml#stage_
—base FF (continues on next page)
110 Chapter 7. Advanced

obsinfo, Release 0.110

(continued from previous page)

|

Instantiation in the subnetwork file, (drilling through the instrumentation to the datalogger):

stations:
<STATION1>:
instrumentation:

base: {$ref: "my_instrumentation.instrumentation.yaml"}
datalogger_configuration: "500sps"”

Note 1: There is almost nothing specified for the “125sps” configuration because it is the default. For schema testing
purposes, the base_level description must include all required parameters, so there’s no point repeating them in

the configuration definition.

Note 2: The text in the configuration description will be added to the equipment:description field, which will

become (for the default configuration): “CS5321/22 A/D converter + digital filter [config: 125 sps]”

Note 3: If no “configuration_description” is provided, the configuration name will be added to the

equipment:description

Locations

base configuration in a location_base file

location_base:
depth.m: 0
geology: "unknown"
vault: "Sea floor"
uncertainties.m: {lon: 200, lat: 200, elev: 20}
measurement_method: "Sea surface release point"
configuration_default: "SEA_SURFACE"
configurations:
"SEA_SURFACE":
configuration_description: "Standard sea-surface deployment"”
"MAYOBS_SEA_SURFACE":
configuration_description: "Sea-surface deployment offshore Mayotte"
measurement_method: "Sea surface release point"
uncertainties.m: {lon: 300, lat: 300, elev: 20}
"ACOUSTIC_SURVEY":
uncertainties.m: {lon: 5, lat: 5, elev: 10}
measurement_method: "Acoustic survey"
"AIRGUN_SURVEY":
uncertainties.m: {lon: 40, lat: 40, elev: 40}
measurement_method: "Airgun survey"
notes: ["Uncertainty will generally be least along-line"]
"BUC_DIRECT":
uncertainties.m: {lon: 5, lat: 5, elev: 10}
measurement_method: "Short baseline transponder, seafloor release"
"BUC_DROP" :

(continues on next page)

7.1. Base-configuration-modifications

obsinfo, Release 0.110

(continued from previous page)

uncertainties.m: {lon: 20, lat: 20, elev: 20}
measurement_method: "Short baseline transponder, near-seafloor release"’

Instantiation in the subnetwork file

subnetwork:

stations:
"LSVIW":
locations:
"00":
base: {$ref: 'location_bases/INSU-IPGP.location_base.yaml#location_
—base'}
configuration: "SURFACE_DROP"
position: {lon: -32.32504, lat: 37.29744, elev: -2030}
"LSVE":
locations:
"00":
base: {$ref: 'location_bases/INSU-IPGP.location_base.yaml#location_
—base'}
configuration: "ACOUSTIC_SURVEY"
position: {lon: -32.02504, lat: 37.25744, elev: -2130}
Clock drift

base configuration in a timing_base file named Seascan_GNSS. timing_base.yaml

timing_base:
instrument: "Seascan MCX0O, ~le-8 nominal drift"
reference: "GNSS"
start_sync_instrument: 0

Instantiation in a subnetwork file

subnetwork:

stations:
"LSVW":
processing:
- clock_correction_linear:
base: {$ref: "timing_ bases/Seascan_GNSS.timing_base.yaml#timing_base
G

(continues on next page)

112 Chapter 7. Advanced

obsinfo, Release 0.110

(continued from previous page)

start_sync_reference: "2015-04-21T21:06:00Z"

end_sync_reference: "2016-05-28T20:59:00.32Z"

end_sync_instrument: "2016-05-28T20:59:03Z"
"LSVE":

processing:
- clock_correction_linear:
base: {$ref: "timing_bases/Seascan_GNSS.timing_base.yaml#timing_base
~"}
start_sync_reference: "2015-04-21T22:00:00Z"
end_sync_reference: "2016-05-29T20:59:59.32Z"
end_sync_instrument: "2016-05-30T21:00:00Z"

Changing a sensor

using channel_modifications to change the type of hydrophone on the “*H’ channel:

stations:
<STATION1>:

instrumentation:
base: {$ref: "my_instrumentation.instrumentation.yaml"}
channel-modifications:
'*H':
sensor:
base: {$ref: "my_other_sensor.sensor_base.yaml"}
serial_number: "H424B"

Chained configurations

In this example, the preamplifier configurations affect the configuration of the stages beneath them

The preamplifier_base definition:

preamplifier_base:
equipment:
model: "HYDRO-GAIN"
type: "Analog gain/filter card"
description: "SIO gain/filter card, hydro channel"”
manufacturer: "SIO or IPGP"
vendor: ""
configuration_default: "64x gain"
stages:
- {base: {$ref: "preamplifiers/stages/Scripps_SPOBS_HydroL22_theoretical.stage_
—Dbase.yaml#stage_base"}}
configurations:
"16x gain":
stages: [{configuration: "16x"}]

(continues on next page)

7.1. Base-configuration-modifications 113

obsinfo, Release 0.110

(continued from previous page)

"32x gain":

stages: [{configuration: "32x"}]
"64x gain":

stages: [{configuration: "64x"}]
"128x gain":

stages: [{configuration: "128x"}]

the stage_base definition Scripps_SPOBS_HydroL22_theoretical.stage.yaml

stage_base:
description : "PREAMPLIFIER: SPOBS hydrophone or L22"
input_units : {name: "V", description: "VOLTS"}
output_units : {name: "V", description: "VOLTS"}
gain: {value: 64, frequency: 10}
filter :
type : "PolesZeros"
transfer_function_type: "LAPLACE (RADIANS/SECOND)"
zeros : ['0 + 0j']
poles : ['-6.667 + 0j']

delay: 0
configuration_default: "64x"
configurations:
"64x":
gain: {value: 64, frequency: 10}
"32x":
gain: {value: 32, frequency: 10}
"16x":
gain: {value: 16, frequency: 10}
"128x":

gain: {value: 128, frequency: 10}

Instantiation in the subnetwork file configuring the preamplifier to “64x gain”:

stations:
<STATION1>:
instrumentation:

base: {$ref: "my_instrumentation.instrumentation.yaml"}
datalogger_configuration: "500sps"”

channel_modifications:
'#-*": {datalogger: {serial_number: "0145"}}
'"H-*': {preamplifier: {configuration: "64x gain"}}

114 Chapter 7. Advanced

obsinfo, Release 0.110

Setting a custom value from the subnetwork file

You could force the gain of one stage to a non-configured value (1000 in this example), as follows:

stations:
<STATION1>:

instrumentation:
base: {$ref: "my_instrumentation.instrumentation.yaml"}
datalogger_configuration: "500sps"
channel_modifications:

'*-%': {datalogger: {serial_number: "0145"}}
I*Hl:
preamplifier:
stage_modifications:

"0": {gain: {value: 1000}}}

A complete network file with channel_modifications:

format_version: "0.111"
revision:
authors:
- {$ref: "authors/Wayne_Crawford.author.yaml#author"}
date: "2019-12-19"
subnetwork:
network:
$ref: "network/EMSO-MOMAR.network.yaml#network"
operators:
agency: "INSU-IPGP OBS Park"
contacts:
names: ["Wayne Crawford"]
emails: ["crawford@ipgp.fr"]
website: "http://ipgp.fr"
reference_names:
operator: "INSU-IPGP"
campaign: "MYCAMPAIGN"
stations:
"BB_1":
site: "My favorite site"
start_date: "2015-04-23T10:00:00"
end_date: "2016-05-28T15:37:00"
location_code: "00"
instrumentation:
base: {$ref: "instrumentation/BBOBS1_2012+.instrumentation_base.yaml
—#instrumentation_base"}
channel_modifications:
"o {datalogger: {configuration: "62.5sps"}}

(continues on next page)

7.1. Base-configuration-modifications 115

obsinfo, Release 0.110

(continued from previous page)

locations:
"00":
base: {$ref: 'location_bases/INSU-IPGP.location_base.yaml#location_
—base'}
configuration: "BUC_DROP"
position: {lon: -32.234, lat: 37.2806, elev: -1950}
processing:
- clock_correct_linear_drift:
base: {$ref: 'timing_bases/SEASCAN_GNSS.timing_base.yaml#timing_base'}
start_sync_reference: "2015-04-23T11:20:00"
end_sync_reference: "2016-05-27T14:00:00.2450"
end_sync_instrument: "22016-05-27T14:00:00"
"BB_2":

notes: ["An example of changing the sensor"]
site: "My other favorite site"
start_date: "2015-04-23T10:00:00Z"
end_date: "2016-05-28T15:37:00Z2"
location_code: "00"
instrumentation:
base: {$ref: "instrumentation/BBOBS1_2012+.instrumentation_base.yaml
#instrumentation_base"}
channel_modifications:
sensor: {configuration: "Sphere06"}
datalogger: {configuration: "62.5sps"}

"H-*":
sensor:
serial_number: "IP0OO7"
stage_modifications:
"3": {gain: {value: 15}}
locations:

"00":

base: {$ref: 'location_bases/INSU-IPGP.location_base.yaml#location_
—base'}
configuration: "ACOUSTIC_SURVEY"
position: {lon: -32.29756, lat: 37.26049, elev: -1887}
processing:

- clock_correct_linear_drift:
base: {$ref: 'timing_bases/SEASCAN_GNSS.timing_base.yaml#timing_base'}
start_sync_reference: "2015-04-22T12:24:00"
end_sync_reference: "2016-05-28T15:35:00.3660"
end_sync_instrument: "2016-05-28T15:35:02"
modifications:

start_sync_instrument: "2015-04-22T12:24:01"

notes: "The instrument clock was incorrectly synced at the start”

116 Chapter 7. Advanced

obsinfo, Release 0.110

7.2 AROL compatibility

One of the objectives of obsinfo is to be compatible with the AROL instrumentation database. AROL is a yaml-
based instrumentation database which can be explored through the Yasmine application. Its syntax is heavily based
on version v0.106 of obsinfo. Efforts are underway to make the syntax of the current version of obsinfo and of AROL
be as close as possible. However, since the philosophy is somewhat different, some discrepancies will be inevitable.
AROL builds a configuration out of user choices made with the Yasmine tool. obsinfo lists all available configurations
and lets the user choose using the configuration fields (sensor_configuration, preamplifier_configuration,
datalogger_configuration) in a station or network information file.

The current effort is to make AROL yaml files readable by obsinfo. However, there are some outstanding issues:

1. AROL does not have an offset field in its filter information files. It has a field called delay.samples which
fulfills the same function. Proposed solution: let AROL change name. If not possible, read the AROL file and
change within the obsinfo application.

2. AROL uses units instead of transfer_function_type in Pole/Zero filters. Their value is directly trans-
latable, via a table, to the transfer_function_type enumeration used by StationXML (see table below).
Proposed solution: let AROL change names. If not possible, read the AROL file and change within the obsinfo
application.

AROL unit obsinfo/StationXML equivalent
“rad/s” “LAPLACE (RADIANS/SECOND)”
“hz” “LAPLACE (HERTZ)”
“z-transform” | “DIGITAL (Z-TRANSFORM)”

3. AROL names of “fake” filters ANALOG, DIGITAL and AD_CONVERSION are in CamelCase in
obsinfo: Analog, Digital, ADConversion to be consistent with StationXML. Proposed solution: let
AROL change name. If not possible, read the AROL file and change within the obsinfo application.

4. AROL specifies both input_sample_rate and output_sample_rate for all stages. obsinfo only
specifies the input sample rate for the first stage in the whole instrument. It calculates all the other
values out of decimation factors. This gives more flexibility to the definition of each individual stage
in the stages field of an information file. Proposed solution: read the AROL file and ignore these
fields within the obsinfo application.

5. AROL specifies response stages thus:

response:
decimation_info:
correction: true
stages:

obsinfo simply specifies stages and the correction attribute is specified at the datalogger
level, as it is the only place where it makes sense for the global instrument. Also, correctionis
specified as either boolean in AROL or as a real number. In obsinfo a value of None is equivalent
to AROL False and a numeric value is equivalent to AROL True. Proposed solution: make
obsinfo read the AROL file and interpret this attribute. If found in a response other than the
datalogger, give a warning and ignore.

7.2. AROL compatibility 117

obsinfo, Release 0.110

7.3 Best practices

7.3.1 Place instrumentation information files in a central repository

One of the main pillars of obsinfo philosophy is reuse and the DRY (don’t repeat yourself) principle. In order to
achieve this every effort has been made to ensure reusability, but the ultimate responsibiity for this lies with the user. It
is strongly recommended to create a central repository of instrumentation information files which can then be reused
by several campaigns. Instrumentations should be flexible enough, with several typical configurations, so the need to
make modifications through channel_modifications is minimized.

The use of a central repository will also permit information to be protected assigning modification writes only to the
responsible parties.

Campaign, network and station files can then be placed in different directories according to users and teams.

7.3.2 Use a file hierarchy for different objects

Although obsinfo gives you total flexibility to organize your files as you see fit, it is recommended to use a hierarchy of
directories and the obsinfo_datapath variable setup with the obsinfo-setup application, whose used is explained
in the Installation and Startup Guide.

7.3.3 Validate all information files bottom up

Before trying to create a Station XML file, all information files should be validated individually. The best way to do
this is to proceed bottom up: first validate filters, then stages, then components, then instrumentations, then networks.
This way one can avoid very large output messages which are difficult to parse.

Files in central repositories should never be uploaded unless they re previously validated. Conversely, users can assume
they don’t have any need to validate central repositories.

7.3.4 Verification of stages in information file
All files in central repositories must be validated before being uploaded. It is good practice to validate your files from

the bottom up. That is, validate filter files first, stage next, and so on to network, unless you’re using (already verified)
central repository files. This is to avoid long and unreadable messages from the validator.

7.3.5 Reuse information files

Either create a repository of your own or use one of the central repository. If you plan on working offline, you can clone
the GitLab repository locally.

118 Chapter 7. Advanced

obsinfo, Release 0.110

7.3.6 Document information files with notes, extras and comments

A choice of documentation options are available in information files. Aside of the “#” comment mechanism of the
YAML language, notes are used for obsinfo documentation that will not be reflected in the resulting StationXML file.
On the other hand, comments can be used at the network, station and channel levels which will be incorporated into
the StationXML file. The reason to not extend this to stage and filter is that the resulting StationXML file would
be cluttered with repeated comments. Similarly, at the same levels, extras can be specified. These take the form of
key/value pairs to simulate attributes which are not actually present in StationXML but can be used for documentation.
A typical example is:

DBIRD_response_type : "CALIBRATED"

which is used in several filters. It should be specified at the channel level, though, perhaps specifying to which filters
it applies.

7.3.7 Placement of stages in information file

Although stages can be specified outside the configuration_definitions, this is discouraged un-
less there is a single configuration. If there are several configurations, stages should be specified in
the configuration_definitions. Nevertheless, if stages is specified outside and there are several
configuration_definitions, the one selected will overwrite the stages. If no configuration is specified, the
stages outside will be used.

In the following example, “responses/INSU_BBOBS_gain(0.225_theoretical.stage.yaml” will always be overwritten
by “responses/INSU_SPOBS_L28x128_theoretical.stage.yaml#stage”, as there is a configuration default which corre-
sponds to the configuration definition “128x gain”.

preamplifier:
equipment:
model: "GEOPHONE-GAIN"
type: "Analog gain/filter card"
description: "SIO gain/filter card, seismo channel"
manufacturer: "SI0 or IPGP"
vendor: ""
configuration_default: "128x gain"
stages:
- $ref: "responses/INSU_BBOBS_gain®.225_theoretical.stage.yaml#stage" # THIS.
—WILL BE OVERWRITTEN
configuration_definitions:
"128x gain":
stages:
- $ref: "responses/INSU_SPOBS_L28x128_theoretical.stage.yaml#stage"

Due to this, the best practice dictates that, in the presence of configuration_definitions, the stages in bold
should be omitted. If configuration_default were not present and no configuration is selected at the chan-
nel/instrument level, a warning will be issued and the stages in bold will be used. If no response stages can be
selected then an exception will be raised and the program will exit with error.

The following example, though, is perfectly OK, as there is a single configuration and no need to specify
configuration_definitions:

preamplifier:

7.3. Best practices 119

obsinfo, Release 0.110

equipment: model: “GEOPHONE-GAIN” type: “Analog gain/filter card” description: “SIO
gain/filter card, seismo channel” manufacturer: “SIO or IPGP” vendor:

stages:

* $ref: “responses/INSU_BBOBS_gain(0.225_theoretical.stage.yaml#stage”

7.3.8 How to modify individual stages

Individual stage modification must always be specified in stage_modifications at the instrument component level.
This will NOT work:

preamplifier:
{$ref: "preamplifiers/LCHEAPO_BBOBS.preamplifier.yaml#preamplifier"}
gain:
value: 34
This will:
preamplifier:
{$ref: "preamplifiers/LCHEAPO_BBOBS.preamplifier.yaml#preamplifier"}
stage_modifications:
"y gain:
value: 34

7.3.9 Use of channel modifications

It should be the aim to create a large and flexible instrumentation database with lots of possible configurations. This
way, channel modifications will be rarely used. In fact, it is recommended to use channel modifications sparingly. If
they must be used, remember to always use the adequate syntax. No shortcuts are allowed. All the hierarchical syntax
must be used. For example, to change the gain of a sensor stage you need to write:

channel_modifications:

sensor:
{$ref: "sensors/SIO_DPG.sensor.yaml#sensor"}
stage_modifications:
"' gain:
value: 34

and not a shortcut such as:

channel_modifications:
gain:
value: 34

as there is no way obsinfo can determine to which stage of which component to apply the modification in gain.

120 Chapter 7. Advanced

obsinfo, Release 0.110

7.3.10 How to use notes

There is a single notes attribute in JSON/YAML files, which contains a list of notes, in order to make documentation
more systematic. However, sometimes a user may want to comment a piece of the file (for example, a single station in
a network file). To do so we recommend using the YAML notation for comments, “#” followed by the comment text.
Currently there is no way to do this in JSON files.

7.3.11 Base your info files in templates

While syntax may be a challenge, we recommend strongly that, when starting a new information file, you use a template.
That way at least you can guarantee that the indentation and spelling of attributes is right.

7.4 Notes

7.4.1 Date formats

Dates can be entered in regular “dd/mm/yyyy” format or in UTC format, either “yyyy-mm-dd” or “yyyy-mm-
ddThh:mm:ss” or “yyyy-mm-ddThh:mm:ssZ”, according to norm ISO 8601. The difference between the latter two
formats is that the first represents local time and the second UTC time. The norm allows you to specify hours respec-
tive to UTC by adding or subtracting. This particular format is not allowed in obsinfo. Separators can be either “/” or

o

Dates in other formats will result in an exception.

No effort is made to validate if dates are legal, i.e., to reject dates such as “31/02/2021”.

7.5 Caveats

7.5.1 Caveat: Effect of $ref

In every case, the use of $ref is to totally substitute that line by the content referenced in the file path (under the “#”
tag). It is completely equivalent to write the content of referenced file instead of the $ref line. This should be taken
into account for syntax purposes. If syntax is not validated, a very good chance is that the $ref file syntax is either
wrong or in the wrong place. Not finding the file also causes problems which are not evident at first glance; if you keep
getting errors, check if the file is in the right place.

7.5.2 Caveat: Cryptic syntax messages

Unfortunately, the JSON/YAML parser is very terse reporting syntax errors such as unmatched parentheses, brackets
or curly brackets, single items instead of lists, etc., usually result in an exception with a cryptic message. It is strongly
recommended that YAML files are edited in a suitable editor which can check at least basic syntax errors. See also the
Troubleshooting section below.

7.4. Notes 121

https://en.wikipedia.org/wiki/ISO_8601

obsinfo, Release 0.110

7.5.3 Caveat: Use of response stages

Although response stages are specified at the component (sensor, preamplifier and datalogger) level, in the end they
are considered as a single response for the whole instrument. Response stages are taken in this order: sensor stages,
preamplifier stages and datalogger stages, irrespective of the order in which components appear in the information file.
Within a component, they are taken in the order specified in the information file. In the end, they are numbered from
one to n for the whole response.

7.5.4 Caveat: Treatment of sample rates in response stages

Only the input sample rate should be specified for a response, starting in the ADConversion stage. All other input
and output rate are calculated using the decimation factor of each digital stage. Therefore, input_sample_rate
and output_sample_rate should never be specified for later digital stages, and decimation factor should always be
specified for them.

Total sample rate is calculated for the whole response and checked against the sample rate specified in the datalogger.
A warning will be issued if they are different.

7.5.5 Caveat: ALWAYS follow the syntax and beware of $ref overwriting your at-
tributes

A naive approach to syntax might think that we can add fields, for example, to a $ref information file. For example, the
file could be an instrumentation file and we could decide to add a datalogger configuration which is not present in the
file:

..block-code:: yaml

instrumentation: “$ref” “instrumentations/BBOBS1_2012+.instrumentation.yaml” datalog-
ger_config: “62.5sps”

This is wrong. First, it is the wrong syntax: what channel with the configuration be applied to? There is no indication
of that. Remember: modifications should always follow the same syntax. If datalogger_config belongs under a
channel, it should always be applied to a channel.

But there is another problem. “$ref” will substitute all attributes at the same level, thus erasing the attribute
datalogger_config. If this happens it will be a silent error, since substitution occurs before validation and the
application will never know datalogger_config was there. The correct way of applying datalogger_config is
through channel_modifications at the station level.

7.6 Troubleshooting

Sometimes it is a challenge to understand where an error lies in an information file. Messages are sometimes cryptic.
We recommend you use the best practice above of using templates to avoid indentation errors. Also, if you can, use
the best practice of working with an editor which recognizes elementary YAML errors such as indentation or wrong
parentheses balancing. Let’s review the most common sources of error:

1) JSONEncodeError/EOF. An error which raises a JSONEncodeError exception and/or EOF (end of file)
reached prematurely. This is the most serious error, as it stops processing of the information file and exits the
program. It is usually due to:

a) Indentation
b) Unmatched double or single quotes, parentheses, brackets, curly brackets

¢) Extra commas or not enough commas

122 Chapter 7. Advanced

obsinfo, Release 0.110

Check for these, if possible, with an editor which shows matching signs. Use templates if possible. If everything else
fails, try to reduce the information file to a bare bones version, see if the error persists. If it doesn’t, add new attributes
gradually. For example, a network file might have this kind of problem. Temporarily eliminate attributes such as
channel_modifications and reduce the network to a single station.

2)File not found: <filename>. <filename> has not been found. Either the directory where the file exists is not
correctly specified in the path of the argument or in OBSINFO-DATAPATH, or the <filename> is misspelled or the file
does not exist. This is typical for files referenced in $ref.

3) Validation error: <YAML expression> is not valid under any of the given schemas. This means that
the information file is recognized and correctly parsed, but the portion <YAML expression> is not recognized. This
may be due to illegal values, illegal value type (e.g. a string instead of a number, or a string pattern which does not
correspond to valid patterns. An example is the wrong version:

['format_version']: '0.107' is not valid under any of the given schemas

or a phone number with letters:

['revision']: {'date': '2017-11-30', 'authors': [{'first_name': 'Wayne', 'last_name':
< 'Crawford', 'institution': 'IPGP', 'email': 'crawford@ipgp.fr', 'phones': ['+33A 01 83.
.95 76 63'}]1]1} is not valid under any of the given schemas.

or a string instead of a list (in the phones attribute):

['revision']: {'date': '2017-11-30', 'authors': [{'first_name': 'Wayne', 'last_name':
— 'Crawford', 'institution': 'IPGP', 'email': 'crawford@ipgp.fr', 'phones': '+33A 01 83.
95 76 63'}]} is not valid under any of the given schemas

One possibility with validation errors is that the output of the message may be too long and difficult to parse, as it
shows the whole produced information files with all its subfiles. The way to avoid this is to apply the best practice of
validation bottom-up: first validate filters, then stages, then components, then instrumentations, then networks. This
way the output is manageable.

4) Validation error: Additional properties are not allowed (<attribute name> was unexpected) An
attribute name was not recognized, either because it was misspelled or because it does not exist in the specification.

['nmetwork']['operator']: Additional properties are not allowed ('fulsdl_name' was.
—unexpected)

5) Validation error: <attribute name> is a required property A required attribute name was not included.

['network']['operator']: 'reference_name' is a required property

7.7 Addons

If you want to add codes allowing you to make scripts according to your needs, use the obsinfo/addons/ directory.
Existing classes/executables in this directory are:

¢ LCHEAPO: Go from SIO LC2000 data files to basic miniSEED.
* SDPCHAIN: Go from basic miniSEED to datacenter-ready data
* LC2SDS: Generate basic clock-corrected SDS data archives.

* OCA:

7.7. Addons 123

obsinfo, Release 0.110

7.7.1 LCHEAPO

Creates scripts to generate miniSEED data from SIO LC2000 data files. miniSEED files are deliberately NOT drift
corrected so that that step can be done at a data/metadata preparation ‘A-node’

Run through the executable obsinfo-makescripts-LCHEAPO

the generated scripts need the sdpchain module (not publically available)

7.7.2 SDPCHAIN

Makes scripts to to go from basic miniSEED to data center ready
Run through the executable obsinfo-makescripts-SDPCHAIN

the generated scripts need the sdpchain module (not publically available)

7.7.3 LC2SDS

Makes scripts to generate SDS data archives directly from SIO LC2000 data files, including basic clock corrections.
To furnish facility users, NOT FDSN/EIDA-level data centers

Runs through the executable obsinfo-makescripts-LC2SDS

The generated scripts need the pip-available Icheapo module

7.7.4 OCA

Just a stub for metadata conversion between obsinfo and OCA protocols. Never finished.

124 Chapter 7. Advanced

CHAPTER
EIGHT

NOMENCLATURE

Terms that have specific meanings in the obsinfo universe

experiment the highest level of the experiment-campaign-expedition sequence, it represents all data collected at one
region (something like an FDSN network)

campaign A data collection campaign, which may consist of one or more expeditions. Each campaign generally
represents one group of data that will be sent to a data center

expedition One data-collection mission, generally a ship leg for OBS deployments
element Anything written as a key in a key: value pair in an information file
key Must be a string

attribute

parameter

125

obsinfo, Release 0.110

126 Chapter 8. Nomenclature

CHAPTER
NINE

TRAINING COURSE

9.1 Introducing obsinfo

9.1.1 Philosophy and comparison to other systems
obsinfo is a system to create standard seismological metadata files (currently StationXML), as well as processing
flows specific to ocean bottom seismometer (OBS) data. It’s basic philosophy is:
1) break down every component of the system into “atomic”, non-repetitive units.
2) Follow StationXML structure where possible, but:
a) Add entities missing from StationXML where necessary

b) Use appropriate units for each component (for example, specifying the offset for a digital filter, not the
delay, which depends on the sampling rate)

3) Allow full specification of a deployment using text files, for repeatibility and provenance

File formats

Compared to StationXML files

* Minimizes repeated information
— for example, in StationXML

Each channel could have the same datalogger but all of the datalogger specifications are repeated for
each channel.

% Within a channel’s response itself, several of the stages may be identical (except for the offset).
 Eliminate fields that can be calculated from other fields, such as:
— The <InstrumentSensitivity> field, which depends on the Stage s that follow

— The <Delay> for a digital filter stage, which can be calculated from <Offset> * <Factor> /
<InputSampleRate>

127

obsinfo, Release 0.110

Compared to RESP files

RESP files (mostly used in the Nominal Reference Library) are just text representations of the Dataless SEED files that
preceded the StationXML standard, so they share the repetitive nature of StationXML files and add the complexity of
a non-standard text format.

Compared to AROL

The Atomic Response Objects Library (AROL) replaces the RESP-based Nominal Response Library in the new YAS-
MINE system. Files use the same atomic concept and YAML structure as obsinfo, in fact the AROL format was
based on a previous version of obsinfo and we try to keep the two compatible.

AROL lacks the subnetwork, station and instrumentation levels as these are assembled by YASMINE.

Metadata creation systems

Compared to PDCC

PDCC is a graphical user interface allowing one to assemble different components (sensors, dataloggers, amplifiers)
and then add in deployment information. Components can be added from the Nominal Response Library (NRL),
which combines RESP files with textual configuration files which allow the user to select the exact component and
configuration they used. obsinfo uses a fully textual description of instruments and deployments rather than a graphical
user interface.

Compared to IRIS DMC IRISWS

I don’t know much about this, it looks like a webservice to obtain component responses but I’'m not sure how you’re
supposed to assemble them. It might just be a more modern way to access the NRL components that is supposed to be
used by newer systems.

Compared to YASMINE

YASMINE is a new StationXML metadata creation tool. It’s major difference from PDCC is its use of atomic response
files, which should be compatible with obsinfo files. It provides a graphical user interface (YASMINE-EDITOR) and
a command-line interface (YASMINE-CLI). The major differences from obsinfo are the lack of instrumentation,
station and subnetwork levels, as well as processing information such as instrument clock drift

9.1.2 File formats

All information files can be written in YAML or JSON format. Use whichever you prefer. YAML is generally easier
to write and read by humans, whereas JSON is easier for computers. The tutorial includes a section describing YAML
files as used in obsinfo (tutorial:tutorial-1). There are many sites for converting from one format to the other and for
validating either format: including this json-to-yaml-convertor and this yaml-validator.

128 Chapter 9. Training Course

https://gitlab.com/resif/arol
http://ds.iris.edu/ds/nrl/
https://github.com/iris-edu/yasmine-stationxml-editor
https://github.com/iris-edu/yasmine-stationxml-cli
https://yaml.org
https://www.json.org/json-en.html
https://onlineyamltools.com/convert-json-to-yaml
https://codebeautify.org/yaml-validator

obsinfo, Release 0.110

9.1.3 The Tutorial

This training course is meant to accompany an instructor. The tutorial provides a more detailed step-by-step explanation
and we refer to sections of the Tutorial throughout this training course.

9.1.4 Structural units

A full obsinfo subnetwork description consists of the following entities (starred fields are optional):

format_version: {}
*revision: {}
*notes: []
subnetwork:

network: {}
operators: []
*restricted_status: <string>
comments: []
extras: {}
*reference_names: {}
stations:
<STATIONNAME1>:
site: <string>
start_date: <string>
end_date: <string>
locations: {}
location_code: <string>
instrumentation:
base:
equipment: {3}
channels:
default:
*orientation: <string or {}>
datalogger:
<< GENERIC_COMPONENT
*configuration: <string>
sample_rate: <number>
*correction: <number>
preamplifier:
<< GENERIC_COMPONENT
*configuration: <string>
Sensor:
<< GENERIC_COMPONENT
seed_codes:
*configuration: <string>
*location_code: <string> # otherwise inherits from station
*comments: []
*extras: {}
<SPECIFIC-CHANNEL1>: {}
<SPECIFIC-CHANNEL2>: {}

*serial_number: <string>
*modifications: {}

(continues on next page)

9.1.

Introducing obsinfo 129

obsinfo, Release 0.110

(continued from previous page)

*channel_modifications: {}
*notes: []
*comments: []
*operators: []
*extras: {}
*processing:
- *clock_correction_linear: {}
- *clock_correction_leapsecond: {}
<STATIONNAME2>:

‘Where GENERIC_COMPONENT is:

equipment: {}

*configuration_default: <string>

*configurations: {}

*stage_modifications: {}

*notes: []

stages:

- stage:
base:

input_units: <string>
output_units <string>
gain: <number>
*name: <string>
*description: <string>
*decimation_factor: <integer>
*delay: <number>
*calibration_date: <string>

*polarity: '+' or '-' # default is '+'
*input_sample_rate: <number>
*filter:

type: <string>
<fields depending on type>
*configuration: <string>
*modifications: {}
- stage:

And FILTER is:

type: <string> # one of "PolesZeros", "FIR", "Coefficients",
"ResponseList", "Polynomial", "ADConversion",
"Analog", "Digital"
*description: <string>
*delay.samples: <number> # for all except "Analog" and "PolesZeros"
*delay.seconds: <number> # for "Analog" and "PolesZeros"
other parameters specific to the specified type

This could all be in one file, in which case there would be little benefit over StationXML. The power of obsinfo comes
from the ability to put any sub-entity into a separate file, which is called from the parent file using the $ref field.

Standard file levels are: subnetwork, instrumentation_base, datalogger_base, preamplifier_base,
sensor_base, stage_base and filter. The schema files are defined at these same levels, allowing the command-

130 Chapter 9. Training Course

obsinfo, Release 0.110

line tool obsinfo-validate" to validate any file ending with {one of the above}.{yaml,json}. Other elements often
put into separate files are author, location_base, network_info and operator

A common file structure is then (this time showing only the required fields):

¢ a subnetwork file:

format_version: <string>
subnetwork:
operators: []
network: {$ref: networks/xxx.network.yaml#network}
stations:
<STATIONNAME1>:
site: string
start_date: string
end_date: string
location_code: string
instrumentation:
base: {$ref: instrumentations/xxx.instrumentation_base.yaml
#instrumentation_base}
locations: {}
<STATIONNAME2>:

<STATIONNAME3>:

¢ instrumentation_base files:

format_version: <string>
instrumentation_base:
equipment: {}
channels:
default:
datalogger: {base: {$ref: dataloggers/xxx.datalogger_base.yaml
—#datalogger_base}}
sensor: {base: {$ref: sensors/xxx.sensor.yaml#sensor}}
<SPECIFIC-CHANNEL1>: {}
<SPECIFIC-CHANNEL2>: {}

* datalogger_base files:

format_version: <string>
datalogger_base:
<< GENERIC_COMPONENT
sample_rate: float

¢ sensor_base files:

format_version: <string>
sensor_base:
<< GENERIC_COMPONENT
seed_codes:

e stage_base files:

9.1. Introducing obsinfo 131

obsinfo, Release 0.110

format_version: <string>
stage_base:
input_units : {}
output_units : {}
gain : {}
filter :
type : <string>

o filter files:

There are 5 filter types corresponding directly to their StationXML analogues: PoleZeros, FIR, Coefficients,
ResponseList and Polynomials. 3 other types allow simpler information entry:

— Analog: An analog stage with no filtering (translated to StationXML PoleZero without any poles or zeros)

— Digital: A digital stage with no filtering (translated to StationXML Coeflicients stage without any coef-
ficients)

— ADConversion: like an analog stage, plus information about input voltage and output counts limits

For examples, see Information_Files/{datalogger, preamplifier, sensor}/stages/filters
PoleZero example:

format_version: "0.111"

filter:
type: "PolesZeros"
transfer_function_type: "LAPLACE (RADIANS/SECOND)"
Zeros:

- '0.0 + 0.0j'
- '0.0 + 0.0j'
poles:

- '19.99 + 19.99j"'

- '19.99 - 19.99j"

You don’t actually need to put the information in each file under a field with the filetype name: in fact if you didn’t you
would save a little typing, as you could specify, for example,

{$ref: xxx.datalogger_base.yaml}

instead of:

{$ref: xxx.datalogger_base.yaml#datalogger_base}

But the second style is preferred as it allows the files to contain useful provenance and version information at the base
level. To incite you to use the second style, obsinfo-validate only accepts this style.

132 Chapter 9. Training Course

obsinfo, Release 0.110

9.1.5 Comments, notes and extras

Comments and notes are both lists of text.

comments will be transformed in to StationXML comments. They can be entered at the subnetwork, station and
channel level and will be transformed into StationXML comments at the same level.

notes will not go into the StationXML file, they are for your information only. They can be entered at the base,
station, and component levels.

extras is a free object-based field. It can be used to add fields that may be useful in a future version of obsinfo.
Nothing there is put into the StationXML code unless the obsinfo software is specifically updated to do so (which
allows new fields without breaking compatibilty or schema rules). They can be entered at the subnetwork, station
or channel level

9.1.6 Configurations, channel modifications and shortcuts

components can have pre-defined configurations and their internal values can be modified from higher levels.

The simplest and most common example is specifying each station’s sampling rate, which is done as follows:

modifications:
datalogger: {configuration: "125sps"}

Configurations
Configurations modify parameters in a given component according to an existing configuration_definition in
the component’s information file.
Allowed fields are:
¢ datalogger_configuration
e sensor_configuration
e preamplifier_configuration
Configurations can be specified at the following levels, in order of priority:
1) station:channel_modifications
2) instrumentation:channels: {CHNAME}
3) instrumentation:channels:default

Configurations are defined in the the component information files under the configuration_definition field.

Channel Modifications

channel_modifications directly modify one or more parameters in a given element. This gives complete control
to the user but assumes knowledge of the obsinfo hierarchy.

Details of channel_modifications are provided in the Advanced Topics section advanced/chan_mods

9.1. Introducing obsinfo 133

obsinfo, Release 0.110

Shortcuts

datalogger_configuration, preamplifier_configuration and sensor_configuration are actually short-
cuts for common channel_modifications. Shortcuts are hard-coded into obsinfo to allow simpler representation
of common configurations or modifications. Other ones may be added, including XX_serial_number, where XX
could be datalogger, sensor, preamplifier or instrumentation

Other sources
¢ Channel modifications are described briefly in /tutorial/tutorial-3:channel modifications and in detail in /ad-
vanced/chan_mods

e Component configurations are described in /tutorial/tutorial-4:configurations and /tutorial/tutorial-
S:configuration definitions and /tutorial/tutorial-6:datalogger configuration definitions

9.1.7 Details

» Referenced files referenced are searched for starting at the paths given in the ~/.obsinforc file

9.1.8 delay, offset, and correction
One area where obsinfo differs from StationXML is in its handling of delays in digital filters. StationXML (and RESP)
have three parameters in each stage, relating to the time delay created by the stage, in each Stage’s Decimation section:

offset Sample offset chosen for use. If the first sample is used, set this field to zero. If the second sample,
set it to 1, and so forth.

delay The estimated pure delay for the stage (in seconds). This value will almost always be positive to
indicate a delayed signal.

correction The time shift, if any, applied to correct for the delay at this stage. The sign convention used
is opposite the <Delay> value; a positive sign here indicates that the trace was corrected to an earlier
time to cancel the delay caused by the stage and indicated in the <Delay> element.

StationXML specifies the delay for each stage, leaving the offset equal to zero. A digital filter’s true delay is in samples,
not seconds, meaning that the delay will depend on the sampling rate.

obsinfo’s atomic philosphy does not allow a variable delay (in seconds) when there is a constant delay (in samples).
obsinfo puts delay in the stage level but offset in the filter level. For digital filters, offset”™ should be filled
with the delay samples and " delay should not be provided.

9.1.9 Details

» Referenced files referenced are searched for starting at the paths given in the ~/.obsinforc file

134 Chapter 9. Training Course

https://gitlab.com/resif/obsinfo
http://docs.fdsn.org/projects/stationxml
http://docs.fdsn.org/projects/stationxml
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#decimation
https://gitlab.com/resif/obsinfo
https://gitlab.com/resif/obsinfo

obsinfo, Release 0.110

9.1.10 Command-line files

all of the command line files start with obsinfo-, so if you have a decent shell you should be able to see them by typing
obsinfo<TAB>

obsinfo-makeStationXML makes stationXML files from an obsinfo subnetwork file and its dependencies
obsinfo-validate validates subnetwork, instrumentation, datalogger, sensor, preamplifier, stage and filter files
obsinfo-print

obsinfo-print_version

obsinfo-setup creates the .obsinforc file and can also create an example database.

obsinfo-test runs a series of validation tests

The different obsinfo-makescripts-* command-line scripts are used for making IPGP-specific data processing
flows, as described below. They could be used as a basis for creating your own data processing flows.

The directory obsinfo/obsinfo/addons/ contains programs to create processing scripts using the information in
the subnetwork files.

This is addressed in more detail in the training_course/4_advanced module

9.2

Setting up

The following are basic steps to install and confirm that everything is working

9.2.1 Installation

Note:

DOES NOT (YET) WORK IN WINDOWS: use a Mac or Linux computer
Install obspy using their Conda Installation instructions
In your obspy environment, install obsinfo by typing pip install obsinfo

type pip list to confirm that your version is up-to-date (0.111.1.post5 at least)

More detailed instructions are in the Installation and Startup Guide

9.2.2 Copy an example database into your own folder

Create a working directory

Go in there and run obsinfo-setup -d DATABASE

A subfolder named DATABASE will be created. Inside is a directory named Information_Files and under that are
lots of subdirectories with obsinfo information files.

9.2. Setting up 135

https://github.com/obspy/obspy/wiki/Installation-via-Anaconda

obsinfo, Release 0.110

9.2.3 Create a StationXML file

Copy one of the network files from the DATABASE/ directory into your working directory:

cp DATABASE/Information_Files/subnetworks/EXAMPLE_essential.subnetwork.yaml .

Then run obsinfo-makeStationXML on it:

obsinfo-makeStationXML EXAMPLE_essential.subnetwork.yaml .

A file named “EXAMPLE_essential.station.xml” should be created

9.2.4 Test the other command-line codes

Try the following two lines, to make sure that the other command-line codes work:

obsinfo-validate EXAMPLE_essential.subnetwork.yaml
obsinfo-print EXAMPLE_essential.subnetwork.yaml

9.3 Creating a StationXML file using your own instruments and de-
ployments

In each case, use:
* associated example and schema files to help you create the file(s)
* obsinfo-validate to validate your file(s)
e obsinfo-print for something?

* obsinfo-makeStationXML to verify that you can create a StationXML file

9.3.1 Creating a network file (using the example instruments)

Create your own network file, using existing instruments in the example_directory.
First-level associated files: network Second-level associated files: author, network-info, operators,

location_bases

9.3.2 Adding your own sensor/datalogger/analog filter

Add and validate sensor, datalogger and/or preamplifier(s) in the example_directory. Modify an example instrumenta-
tion file to reference the new compoent(s) and create a StationXML file

First-level associated files: datalogger, sensor, preamplifier, stage, filter

Second-level associated files: author

136 Chapter 9. Training Course

obsinfo, Release 0.110

9.3.3 Adding your own instrumentation

Create a new instrumentation (OBS), using your newly created components and any other specific information

First-level associated files: instrumentation Second-level associated files: author, operators

9.3.4 Putting it all together

Create a network file corresponding to a deployment of your own instruments.

9.4 Advanced issues

9.4.1 Creating a processing pathway

The directory obsinfo/obsinfo/addons/ contains programs to create processing scripts using the information in
the network files. These scripts depend on the external programs used: obsinfo currently has programs for:

Transformation file command line

LCHEAPO OBS data to miniSEED using the SDPCHAIN | LCHEAPO.py | obsinfo-makescripts_LCHEAPO
tools
uncorrected to corrected miniSEED using the SDPCHAIN | SD- obsinfo-makescripts_SDPCHAIN
tools PCHAIN.py
LCHEAPO OBS data to (poorly) corrected SDS structure LS2SDS.py obsinfo-makescripts_LC2SDS

These probably aren’t directly applicable to other OBS facilities, but the files can serve as a basis for your own codes.
The command line programs are created using the console_scripts parameter in obsinfo/setup.py

9.4.2 Storing and accessing your instrument database online

I have never done this, Luis discusses it in tutorial/tutorial-3:file-discovery

9.5 Future plans

9.5.1 obsinfo v0.111

All of this are “issues” on the gitlab site. All will require changes to input files (major change)

Replace “network” with “subnetwork”

Avoid confusion with FDSN network, more compatible with concept of multiple facilities/deployments possibly com-
posing an FDSN network

9.4. Advanced issues 137

obsinfo, Release 0.110

Bring instrument modifiers under station:instrumentation

And allow instrumentation-level configuration by adding modifications and config fields.
* This could also just be equipment_modifications as I think equipment is all that is modified

e serial_number is shorthand for * (serial_number is in equipment), or maybe keep it as a shorthand for
equipment_modifications {serial_number: }: declaring both should be considered an error (can it be
done in the schema file?)

v0.110

instrumentation:

{$ref: "xxx.instrumentation.yaml"}
serial_number: string
channel_modifications: object

0.111

instrumentation:
base: {$ref: "xxx.instrumentation.yaml"}
serial_number: string
config: string
modifications: {equipment: object of equipment parameters to change}
channel_modifications: object

or

instrumentation:
base: {$ref: "xxx.instrumentation.yaml"}
serial_number: string
config: string
equipment_modifications: object of equipment parameters to change
channel_modifications: object

Make “person” fields compatible with StationXML Person

Currently “author”, change to “person”

v0.110

first_name: string

last_name: string

institution: string

email: string

phones: array of strings or [country_code, area_code, phone_number] objects

0.111

name: string

agency: string

email: string

phone: string or [country_code, area_code, phone_number] objects

138 Chapter 9. Training Course

obsinfo, Release 0.110

Make uncertainties into objects with measurement_method

Currently, azimuth.deg and dip.deg are 2-element arrays of number or null, with the first value being the value and the
second the uncertainty, e.g.:

azimuth.deg: [90, 5]
dip.deg: [0, 1]

Change them to be objects with the possible attributes specifed in the “StationXML Documeta-
tion<http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#azimuth>"_:

azimuth: {value.deg: 90, uncert.deg: 5, measurement_method: "Ppol"}
dip: {value.deg: 0, uncert.deg: 1, measurement_method: "Ppol"}

only value.deg should be required.
Should probably enable this for all fields that are defined as “FloatType” in the 1.1 XML schema:
* WaterLevel (units=m)
e ClockDrift (units=s?)
* Response:Amplitude (no units, specifed elsewhere?)
* Response:Phase (units=deg)
* Response:Frequency (units=Hz)
e Decimation: InputSampleRate (units=Hz)
o PzTransferFunctionType:NormalizationFrequency (units=Hz)
» ApproximationType:FrequencyLowerBound (units=Hz)
* ApproximationType:FrequencyUpperBound (units=Hz)
e Decimation:Delay (units=s)
e Decimation:Correction (units=s)
* DipType (units=deg)
e Depth (units=m)
e SampleRate (units=sps)

But allow value-only shortcut definitions, in which case uncert and measurement_method will be set to null, for exampe
WaterLevel.m: 0, ClockDrift.s: 1e-10 and so on...

Latitude.deg Longitude.deg and Elevation.m are special cases for which the uncertainties and measurement method
can be separately specified, as is currently the case.

Or should I allow a separate _uncert variable for each field, in case they are the same for all instances (would only be
inserted if the value was otherwise null)?

Perhaps have special uncertainties and measurement_methods objects that defined default uncertainties:

uncertainties: {lat.m: 100, lon.m: 100, elevation.m: 10}
measurement_methods: {lat: "acoustic survey", lon: "acoustic survey", elevation:
—"acoustic survey", azimuth: "Ppol"}

for which I should probably keep the separation of uncertainties, measurement method and values

9.5. Future plans 139

obsinfo, Release 0.110

Remove intrumentation:operator field from schema

Already does nothing, but I kept it there to avoid breaking existing files

Make “operator” conform to StationXML standard

Currently flat:

operator:
reference_name: # Just for link with campaign file, not StationXML
full_name: # Change to "agency"
contact: # Currently just a person's name
phone_number:
email:
website:

Should be

operator:
reference_name: # Just for link with campaign file, not StationXML
agency:
contact:
name:
agency:
phone_number:
email:
website:

The contact is a Person type and so can just be loaded from an “author” file (change “authors” to “persons’)

StationXML errors to fix in new version 0.111

The following errors, originally 6.3, 6.4, 8, 9, 10 and 12 in issue #3, will be addressed in vO.111. Most require a new
version, because we will need to add a base field to the instrumentation object in order to bring station serial number
and channel_modifications into this object:

1. No Serial Number shown for Station/Equipment

2. LSS5a s listed as 125 sps even though the network file says 62.5 sps
And the following (possibly derived) errors:

1. Channel

a) Sensor serial number is given as “32793N” (direct from instrumentation files, doesn’t take into account
OBS serial number)

2. Preamp/Datalogger/Equipment have no Serial Number

Moreover, I have to decide how to specify instrumentation-level serial numbers and configurations. Should I imitate
channel_modifications with and instrumentation_modifications (or just modifications?) field, or should I allow specific
common fields such as serial_number and instrumentation_configuration (or configuration)?

Other bugs that I didn’t fix in v0.110.12:
1. Channel

1. Sensor

140 Chapter 9. Training Course

obsinfo, Release 0.110

1. Has installation date, removal date and three calibration dates, all after expt (Trillium T240)
2. PreAmplifier
1. BBOBS gain card description is not specific enough (1x? 0.225x?)
2. No Comment (or field) saying how the station was located

3. Equipment description does not include configuration-specific information (need configuration_description
field?)

Should also make all tests work and maybe put my own tests back in

Generalize base-configuration-modification

schema files currently have no means to be configured (or modified?).
One solution would be to add to this level.

Another would to allow base, configuration and modification fields at any level: if “base” is specified, then configuration
and or modification can be put at the same level.

9.5. Future plans 141

obsinfo, Release 0.110

142 Chapter 9. Training Course

CHAPTER
TEN

DEVELOPER’S CORNER

10.1 Introduction

10.1.1 Python architecture

Executables

The following command-line executables perform the main tasks:

* makeSTATIONXML: generates StationXML files from a network + instrumentation information files

$ python3 makeStationXML -h

displays all the options of makeStationXML.

To create a StationXML file from a file called <filename>, type:

$ python3 makeStationXML.py [options] filename

* obsinfo-validate: validates an information file against its schema
* obsinfo-print: prints a summary of an information file
The following command-line executables make scripts to run specific data conversion software:
* obsinfo-make_LCHEAPO_scripts: Makes scripts to convert LCHEAPO data to miniSEED

* obsinfo-make_SDPCHAIN_scripts: Makes scripts to drift correct miniSEED data and package them for
FDSN-compatible data centers

Package and Modules

The package name is obsinfo

obsinfo.main contains code to initialize the main obsinfo routine, to read and potentially validate main (network)
information file and to write StationXML file

obsinfo.network and obsinfo.instrumentation contain the main code to process the corresponding information
files.

obsinfo.0BSMetadata contains code to read and validate information files in either YAML or JSON formats.

obsinfo.misc contains miscellaneous code, currently deprecated and unsupported, which is not used anymore in the
application

obspy.addons contains modules specific to proprietary systems:

143

obsinfo, Release 0.110

* obspy.addons.LCHEAPO creates scripts to convert LCHEAPO OBS data to miniSEED using the 1c2ms soft-
ware

* obspy.addons. SDPCHAIN creates scripts to convert basic miniSEED data to OBS-aware miniSEED using the
SDPCHAIN software suite

* obspy.addons.OCA creates JSON metadata in a format used by the Observatoire de la Cote d’Azur to create
StationXML

Auxiliary subdirectories

obsinfo/data/schema

data/schema contains JSON Schema for each file type.

obsinfo/_examples/

Contains example information files and scripts:
e _examples/Information_Files contains a complete set of information files
— _examples/Information_Files/network contains network files

— _examples/Information_Files/instrumentation contains instrumentation, instru-
ment_components, response and filter files.

e _examples/scripts contains bash scripts to look at and manipulate these files using the executables. Running
these scripts is a good way to make sure your installation works, looking at the files they work on is a good way
to start making your own information files.

obsinfo/tests/

Contains test cases and code using unittest.py. The tests are performed either on the information files under test/
data or on _examples.

Comments on versioning

We use standard MAJOR.MINOR.MAINTENANCE version numbering but, while the system is in prerelease:
* MAJOR==
¢ MINOR increments every time the information file structure changes in a non-backwards-compatible way

* MAINTENANCE increments when the code changes or the file structure changes in a backwards-compatible
way

144 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

10.2 Classes

10.2.1 Information File Tree

network | Network
¢ network | FDSNNetwork
 operator | Operator
o station | Station
— processing | Processing
% clock_correct_leap_second | LeapSecond
% clock_correct_linear_drift | LinearDrift
— location | Location
% location_base | LocationBase
— instrumentation(s) | Instrumentation
* equipment | Equipment
* channel | Channel
- No label | Instrument
No label | InstrumentComponent
sensor | Sensor
seed_codes | SeedCodes
preamplifier | Preamplifier
datalogger | Datalogger
stages | Stages
stage | Stage
filter | Filter
ADConversion | ADConversion
Analog | Analog
Coefficients | Coefficients
Digital | Digital
FIR | FIR
PolesZeros | PolesZeros

ResponseList | ResponseList

Names left of the | symbol are as they appear in information files as labels/keys. Names right of the | are the corre-
sponding classes in the object model and the Python implementation of that model. An empty label means the label

does not exist in information files but exists as an object model / Python class.

10.2. Classes

145

obsinfo, Release 0.110

10.2.2 Filter Types

* type="ADConversion” | ADConversion
* type="Analog” | Analog

* type="Coefficients” | Coefficients

* type="Digital” | Digital

 type="FIR” | FIR

* type="PolesZeros” | PolesZeros

* type="ResponseList” | ResponseList

Network

Description

An OBS network is a seismological network of stations as part of a campaign szations in a given campaign.

Python class:

Network

YAML / JSON label:

network Contained in a network file.

Corresponding StationXML structure

Network

Object Hierarchy

Superclass

None

Subclasses

None

146

Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Relationships

¢ Gathers one or more Stations

¢ Is part of a Campaign (not implemented in obsinfo as a class).

Attributes
Name Type Re- De- Equivalent Sta- | Remarks
quired | fault | tionXML
network FDSNNetwork Y None | None
operator Operator Y None | OperatorFDSN Not required in Sta-
tionXML
stations Array of Station Y None | StationFDSN
re- List of values: “open”, “closed”, “par- | N None | None
stricted_state tial”, “unknown”

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/network.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

e Part of the network information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/
Information_Files/network/SPOBS.INSU-IPGP.network.yaml with station content elided:

format_version: "0.107"

revision:
authors:
- $ref: 'authors/Wayne_Crawford.author.yaml#author'
date: "2017-10-04"

subnetwork:

network: code: “4G” name: “Short period OBSs” start_date: “2007-07-01" end_date: “2025-12-31" descrip-
tion: “Short period OBS network example” comments: [“Lucky Strike Volcano, North Mid-Atlantic
Ridge”]

reference_names: operator: “INSU-IPGP” campaign: “SPOBS”
operators: [{agency: “INSU-IPGP OBS Park™}] stations:
“LSVW”:

“LSVE”:

10.2. Classes 147

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#operator
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#station
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/network.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/SPOBS.INSU-IPGP.network.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/SPOBS.INSU-IPGP.network.yaml

obsinfo, Release 0.110

* Another example: https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/
network/BBOBS.INSU-IPGP.network.yaml

Class Navigation

==> Station
==> FDSNNetwork

==> Operator
FDSNNetwork
Description

FDSN network contains specifications compatible with the FDSN standards to describe the Nefwork. This class is not
actually implemented as such in the Python code, its attributes are assigned in the __init__ () method of the Network
class.

Python class:

None These attributes are treated in Network.

YAML / JSON label:

network

Corresponding StationXML structure

None Individual attributes in this class belong to the Network attribute.

Object Hierarchy

Superclass

None

Subclasses

None

148 Chapter 10. Developer’s Corner

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/BBOBS.INSU-IPGP.network.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/BBOBS.INSU-IPGP.network.yaml

obsinfo, Release 0.110

Relationships

* Is part of the specification of a Network

Attributes
Name Type | Re- De- Equivalent Sta- | Remarks
quired fault tionXML
code string | 'Y None code Codes are assigned by FDSN according to this
process
name string| 'Y None None Will be added as a Comment
descrip- string| Y None Description Not required in StationXML
tion
comment | string| N None Comment
start_date | date | Y None startDate Not required in StationXML
end_date | date | Y None endDate Not required in StationXML

JSON schema

https://www.gitlab.com/obsinfo/obsinfo/data/schemas/network.schema.json

https://www.gitlab.com/obsinfo/obsinfo/obsinfo/data/schemas/definitions.schema.json

Example

FDSN Network_info section referred in network information file.

network:

code:
name:
start_date:
end_date:

comments:

"4G"
"Short period OBSs"
"2007-07-01"

"2025-12-31"
description: "Short period OBS network example"
["Lucky Strike Volcano, North Mid-Atlantic Ridge"]

Class Navigation

Network <==

10.2. Classes

149

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#network-required
http://docs.fdsn.org/projects/source-identifiers/en/v1.0/network-codes.html
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#comment
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#description
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#comment
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#network-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#network-required
https://www.gitlab.com/obsinfo/obsinfo/data/schemas/network.schema.json
https://www.gitlab.com/obsinfo/obsinfo/obsinfo/data/schemas/definitions.schema.json

obsinfo, Release 0.110

Operator

Description

Operator specifies the operator of the network, corresponding to the operator field in StationXML. It is also copied to
the operator field in station in StationXML.

Python class:

Operator

YAML / JSON label:

operator

Corresponding StationXML structure

Operator Both in Network and Station.

Object Hierarchy
Superclass

None

Subclasses

None

Relationships

e Is part of a Network

150 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Attributes
Name Type Re- De- Equivalent Sta- | Remarks
quired fault tionXML
refer- string | Y None Operator. Agency Operating agency abbreviation
ence_name
full_name num- | Y None Operator.Contact. Operating agency full name, used in con-
ber Name tact name
con- num- | Y None Operator.Contact.
tact_name ber Name
email email | Y None Operator.Contact. Not required in StationXML
Email
phone_number string | N None Operator.Contact.
Phone
website URL N None Operator. WebSite

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/network.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

Operator section in network information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/
Information_Files/network/SPOBS.INSU-IPGP.network.yaml

operator:

reference_name: "INSU-IPGP"
"INSU-IPGP OBS Park"

full_name:

Class Navigation

Network <==

Instrumentation <==

Station

classes/

10.2. Classes

151

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#agency-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#network-operator-contact-name
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#network-operator-contact-name
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#network-operator-contact-email
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#network-operator-contact-phone
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#website
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/network.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/SPOBS.INSU-IPGP.network.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/SPOBS.INSU-IPGP.network.yaml

obsinfo, Release 0.110

Description

An OBS station is an actual implementation of one or several instrumentation in a given campaign and network.

Python class:

Station

YAML / JSON label:

stations Pertaining to Network Information File

Corresponding StationXML structure

Station

Object Hierarchy
Superclass

None

Subclasses

None

Relationships

* Implements one or several Instrumentations
¢ Is part of a Network

e Is in one or several Locations

152

Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Attributes
Name Type Re- (JIDe- Equiva- Remarks
quired fault | lent Sta-
tionXML
code string Y None | Station. Code does not appear as a YAML/JSON
code attribute. It’s simply the key of the station.

site string Y None | Site

loca- string Y None | alternate- See class Location for details

tion_cod¢ Code

loca- Array of Location Y None | Operator The use of locations is not simple. See

tions class Location for details

instru- | Instrumentation Y None | None This is mostly contained in attribute Chan-

menta- nel in StationXML

tion

pro- Processing N None | Description | Will appear appended to Description in

cessing StationXML

re- List of values: “open”, | N “un- None

stricted_stdtelosed”, “partial”, “un- known!’

known”

com- string N None | Comment

ments

start_dat¢ date N None | startDate All three instrument components have
these dates. They’re the same for all the
station.

end_date| date N None | endDate All three instrument components have
these dates. They’re the same for all the
station.

JSON schema

https://gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/station.schema.json

Example

* Part of network information file https://gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_
Files/network/SPOBS.INSU-IPGP.network.yaml corresponding to the stations, with an example of use of the
anchor &LINEAR_CLOCK_DEFAULT. The instrumentations parts are explained under Instrumentation.

yaml_anchors:
obs_clock_correction_linear_defaults: &LINEAR_CLOCK_DEFAULTS #Definition of the_
—~anchor as the next three attributes.
time_base: "Seascan MCXO, ~le-8 nominal drift"
reference: "GPS"
start_sync_instrument: 0

stations:
"LSVW":

(continues on next page)

10.2. Classes 153

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#station
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#site-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#station
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#station
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#station-description
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#station-description
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#station
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#station
https://gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/station.schema.json
https://gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/SPOBS.INSU-IPGP.network.yaml
https://gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/SPOBS.INSU-IPGP.network.yaml

obsinfo, Release 0.110

(continued from previous page)

site: "Lucky Strike Volcano West"
start_date: "2015-04-22T12:00:00Z"
end_date: "2016-05-28T21:01:00Z"
location_code: "00"
instrumentations:
base:
$ref: "instrumentation/SPOBS2.instrumentation.yaml#instrumentation"
datalogger_config: "125sps”

locations:
"00":
base: {$ref: 'location_bases/SURFACE_DROP.location_base.yaml#location_
—base'}
position: {lon: -32.32504, lat: 37.29744, elev: -2030}
processing:
- clock_correction_linear_drift:
<<: *LINEAR_CLOCK_DEFAULTS
start_sync_reference: "2015-04-21T21:06:00Z"
end_sync_reference: "2016-05-28T20:59:00.322"
end_sync_instrument: "2016-05-28T20:59:03Z"
"LSVE":

site: "Lucky Strike Volcano East"
start_date: "2015-04-22T12:00:00Z"
end_date: "2016-05-28T21:01:00Z"
location_code: "00"
instruments:
base:
$ref: "instrumentation/SPOBS2.instrumentation.yaml#instrumentation"
datalogger_config: "125sps”
locations:
"00":
base: {$ref: 'location_bases/ACOUSTIC_SURVEY.location_base.yaml
—#location_base'}
position: {lon: -32.02504, lat: 37.25744, elev: -2130}
processing:
- clock_correct_linear_drift:
<<: *LINEAR_CLOCK_DEFAULTS
start_sync_reference: "2015-04-21T21:06:00Z"
end_sync_reference: "2016-05-28T20:59:00.32Z2"
end_sync_instrument: "2016-05-28T20:59:01Z"

154 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Class Navigation

Network <==> Instrumentation
==> Location
==> Processing

Instrumentation

Description

An OBS instrumentation is an ensemble of instruments associated with specific channels constitute a physical unity
that will be launched and recovered as a unit. While obsinfo is concerned only with the signal processing aspects of the
instrumentation, an OBS instrumentation also includes the physical parts of the OBS frame, ballast elements, recovery
devices, communication and power supply.

Channels in the instrumentation all have string labels, which are usually channel numbers. They must specify an
orientation. Default chann properties can be specified with a label default. These properties are common to all
channels unless overridden by attributes present in specific channels. For example, if a sensor X appears under the label
default but a sensor Y appears under the label “2” then for channel 2 the selected sensor will be Y. If a preamplifier
Z is specified under the label default and no preamplifier is specified under the label “2”, then channel 2 will have
preamplifier Z. All attributes can be specified under the default label.

Python class:

Instrumentation

YAML / JSON label:

instrumentation Contained in an instrumentation file

Corresponding StationXML structure

None At the Station level StationXML documents the total number of channels and the selected number of channels.
Both are equal in OBS and are calculated implicitly.

Object Hierarchy
Superclass

None

10.2. Classes 155

obsinfo, Release 0.110

Subclasses

None

Relationships

e Is used in a Station
e Has one or several Channels

» Has one or specifications defined in Equipment

Attributes
Name Type Re- De- Equivalent Sta- | Remarks
quired fault tionXML
equipment Equipment Y None None
channels Array of Chan- | Y None Channel
nel
chan- Array of Chan- | Y None Channel See AdvancedTopics for
nel_modifications nel details

The attribute channel_modifications is used to modify the attributes of a channel. In particular, instruments are sup-
posed to be a rather static database of components and their configurations, but occasionally it is necessary to change
some of the attributes for particular campaigns.

Under this keyword the user can specify a complete hierarchy down to the filter level. Only the value(s) specified will be
modified. So if a “leaf” value is changed, such as gain value, only the gain value for a particular stage will be changed.
But if a complete sensor is specified, the whole component along with its stages and filters will be modified. For more
details, see AdvancedTopics.

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/instrumentation.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

YAML code for instrumentation information file https://www.gitlab.com/resif/obsinfo/-/tree/master/
obsinfo/_examples/Information_Files/instrumentation/BBOBS1_2012%2B.instrumentation.yaml with the
channel_template and das_channels parts elided.

format_version: "0.110"
revision:
date: "2019-12-19"
authors:
- {$ref: "authors/Wayne_Crawford.author.yaml#author"}
- {$ref: "authors/Romuald_Daniel.author.yaml#author"}

(continues on next page)

156 Chapter 10. Developer’s Corner

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/instrumentation.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/BBOBS1_2012%2B.instrumentation.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/BBOBS1_2012%2B.instrumentation.yaml

obsinfo, Release 0.110

(continued from previous page)

instrumentation:
operator: {$ref: "operators/INSU-IPGP.operator_info.yaml#operator_info"}
equipment:
model: "BBOBS1"
type: "Broadband Ocean Bottom Seismometer"
description: "LCHEAPO 2000 BBOBS 2012-present"
manufacturer: "Scripps Inst. Oceanography - INSU"
vendor: "Scripps Inst. Oceanography - UNSU"

channels:

default:

lllll:

o,

||3||:

g

Class Navigation

Station <==> Channel

Equipment

Description

Equipment class describes the characteristics of a particular instrumentation or instrument component, such as the

vendor, model, serial number and calibration dates.

10.2. Classes

157

obsinfo, Release 0.110

Python class:

Equipment

YAML / JSON label:

equipment

Corresponding StationXML structure

* Equipment
 Datalogger
* Sensor

e Preamplifier

All of these classes have the same attributes as the obsinfo class, which are populated from the Equipment subclass of
Instrumentation, Sensor, Preamplifier and Datalogger in obsinfo

Object Hierarchy
Superclass

None

Subclasses

None

Relationships

Belongs to:
* Instrumentation
» Datalogger
* Sensor

* Preamplifier

158 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Attributes

Name Type | Required | Default | Equivalent StationXML | Remarks

type string | Y None type Not required in StationXML
description string | Y None Description Not required in StationXML
manufacturer string | 'Y None manufacturer Not required in StationXML
model string | 'Y None model Not required in StationXML
vendor string | N None vendor Not required in StationXML
serial_number string | N None serial_number Not required in StationXML
installation_date | date N None startDate Not required in StationXML
remove_date date N None endDate Not required in StationXML
calibration_date | date N None calibDate Not required in StationXML

e (str):

vendor (str):

serial_number (str):

resource_id (str):

JSON schema

https://www.gitlab.com/obsinfo/obsinfo/data/schemas/network.schema.json

obspy_equipment (object of class Equipment from obspy.core.inventory.equipment

https://www.gitlab.com/obsinfo/obsinfo/obsinfo/data/schemas/definitions.schema.json

Example

FDSN Network_info section referred in network information file.

network:
code: "4G"
name: "Short period OBSs"
start_date: "2007-07-01"
end_date: "2025-12-31"
description: "Short period OBS network example"
comments: ["Lucky Strike Volcano, North Mid-Atlantic Ridge"]

Class Navigation

Network <==

10.2. Classes

159

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#channel-equipment-type
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#channel-equipment-description
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#channel-equipment-manufacturer
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#channel-equipment-model
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#channel-equipment-vendor
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#channel-equipment-serialnumber
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#channel-equipment-installationdate
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#channel-equipment-removaldate
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#channel-equipment-calibrationdate
https://www.gitlab.com/obsinfo/obsinfo/data/schemas/network.schema.json
https://www.gitlab.com/obsinfo/obsinfo/obsinfo/data/schemas/definitions.schema.json

obsinfo, Release 0.110

Channel

Description

An OBS channel is an Instrument plus an orientation. An Instrumentation complex consists of one or several channels,

each one implementing the signal processing of an instrument.

Actual channels all have string labels, which are usually channel numbers. They must specify an orientation. Default
chann properties can be specified with a label default. This is not an actual channel. These properties are common
to all channels unless overridden by attributes present in specific channels. For example, if a sensor X appears under
the label default but a sensor Y appears under the label “2” then for channel 2 the selected sensor will be Y. If a
preamplifier Z is specified under the label default and no preamplifier is specified under the label “2”, then channel
2 will have preamplifier Z. All attributes can be specified under the default label.

Configurations are defined at the instrument component level, but are selected at the channel level. A configuration se-
lection attribute specifies a configuration for each of the three instrument components in a channel: sensor, preamplifier
and datalogger. They are the attributes sensor_configuration, preamplifier_configuration and datalogger_configuration,

respectively.

Python class:

Channel

YAML / JSON label:

e channels
e default

* Particular string labels for each channel

Channels are part of the instrumentation information file.

Corresponding StationXML structure

Channel

Object Hierarchy
Superclass

None

160

Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Subclasses

None

Relationships

* Implements the signal of an Instrument

e Is part of an Instrumentation

10.2. Classes

161

obsinfo, Release 0.110

Attributes

Name

Type

Required

Default

Equivalent Sta-
tionXML

Remarks

instrument

Instrument

Y

None

None

Attributes of
instrument in
Channel in
StationXML

orientation:

Orientation

None

None

e orienta-
tion_code

List of values:

X,Y.Z,1,2,3,H

None

None

If orientation
code is 1,2,3
or H it must
include as a dic-
tionary azimuth
and dip. See
example.

e azimuth

number

None

Channel. Az-
imuth

0.0 Azimuth <
360.0 in degrees

* dip

number

None

Channel. Dip

-90.0 Dip 90.0
in degrees

location_code

string

None

locationCode

See Location-
Base for details
of how location
codes are used.

sen-
sor_configuration

string

None

None

For obsinfo
use only. This
selects one of
the configura-
tions defined in
the instrument
components.

preampli-
fier_configuration

string

None

None

For obsinfo
use only. This
selects one of
the configura-
tions defined in
the instrument
components.

datalog-
ger_configuration

string

None

None

For obsinfo
use only. This
selects one of
the configura-
tions defined in
the instrument
components.

Orientation codes are a FDSN standard. By convention, if the orientation code is X, Y or Z, these represent the regular
coordinates in space following the right-hand rule, within five degrees of the actual directions. So X corresponds to an
azimuth of 0° and a dip of 0°, Y corresponds to an azimuth of 90° and a dip of 0°, and Z corresponds to an azimuth of
0° and a dip of -90° (the positive Z direction is towards the bottom). However, if 1, 2 or 3 are specified, these represent
three linearly independent directions but not necessarily coincidental with the regular coordinates, so an azimuth and

162 Chapter 10. Developer’s Corner

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#azimuth
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#azimuth
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#dip
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#channel

obsinfo, Release 0.110

a dip _must_ be specified. The same is true of the H (hydrophone) code.

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/instrumentation.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

Channels part of instrumentation information file https://gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/
Information_Files/instrumentation/BBOBS1_2012%2B.instrumentation.yaml

channels:
default:
datalogger: {$ref: "dataloggers/LC2000.datalogger.yaml#datalogger"}
preamplifier:
{$ref: "preamplifiers/LCHEAPO_BBOBS.preamplifier.yaml#preamplifier"}
sensor: {$ref: "sensors/NANOMETRICS_T240_SINGLESIDED.sensor.yaml#sensor"}

preamplifier_configuration: "0.225x"

"1": {orientation_code: {"2": {azimuth.deg: [90, 0]}}}
"2": {orientation_code: {"1": {azimuth.deg: [0, 0]}}}
ngn,

orientation_code: "Z"

preamplifier_configuration: "1x"

orientation_code : {"H": {azimuth.deg: [0,0], dip.deg: [90,0]}}
preamplifier: {$ref: "preamplifiers/LCHEAPO_DPG.preamplifier.yaml#preamplifier"}
sensor: {$ref: "sensors/SIO_DPG.sensor.yaml#sensor"}

Class Navigation
Instrumentation <==> Instrument
Instrument

Description

An OBS instrument (measurement instrument) records one physical parameter. It is composed of a Sensor, an optional
Preamplifier and a Datalogger.

10.2. Classes 163

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/instrumentation.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/BBOBS1_2012%2B.instrumentation.yaml
https://gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/BBOBS1_2012%2B.instrumentation.yaml

obsinfo, Release 0.110

Python class:

Instrument

YAML / JSON label:

None Conceptually, the three instrument components are gathered under an instrument, which has a class in Python.
However, as shorthand, we omit the instrument label in information files and list the sensor, preamplifier
and datalogger components directly under channel.

Corresponding StationXML structure

None Atributes of an instrument are assigned to a Channel.

Object Hierarchy
Superclass

None

Subclasses

None

Relationships

¢ Is assigned to a Channel

* Composed of a Sensor, an optional Preamplifier and a Datalogger

Attributes
Name Type Required | Default | Equivalent StationXML | Remarks
sensor Sensor Y None Sensor
preamptlifier | Preamplifier | N None Preamplifier
datalogger Datalogger | Y None Datalogger

164 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

JSON schema

None

Example

None

Class Navigation

Channel <==> InstrumentComponent

InstrumentComponent

Description

An Instrument in obsinfo is broken down into three components: Sensor, an optional Preamplifier and a Datalogger.
All of them are subclasses of this class, with some specialized attributes.

What characterizes all components is that they have an ordered list of response stages, along with different configuration
definitions. The idea is to specify all regularly used configurations (you can always add more later). These different
configuration override selected default attributes at the stage and filter level, or add new attributes to them. In turn, the
information files at the instrumentation level select one particular configuration definition, and thus, one set of overrides
and additions. Configurations are usually labeled with a code which specifies the main characteristic that changes in a
particular set of configurations, such as sample rate or gain; in general, We present examples for three different ways
to characterize configuration definitions.

On the other hand, it is very important to realize that stages must be specified in order. The top level order is sensor
- preamplifier - datalogger, but within these three components it is up to the user to make sure the stages are in the
correct order, starting with the one closer to the sensor.

The class InstrumentComponents does not appear explicitly in YAML or JASON files but it’s part of the object model.

Python class:

InstrumentComponents

YAML / JSON label:

None

10.2. Classes 165

obsinfo, Release 0.110

Corresponding StationXML structure

None

There are structures in StationXML for Sensor, Preamplifier and a Datalogger.

Object Hierarchy
Superclass

None

Subclasses

* Sensor
* Preamplifier
* Datalogger

Relationships

» Contains Stages
* Specs are described in Equipment

e Is part of an Instrument

Attributes
JSON schema

None

Example

None

Navigation

Instrument <==
==> Sensor
==> Preamplifier

==> Datalogger

166 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Sensor

Description

A sensor is an InstrumentComponent belonging to an Instrument. It models an OBS sensor and so is the generator of
the signal being processed. Inheriting from InstrumentComponent, it has all its attributes plus the ones below.

Python class:

Sensor

YAML / JSON label:

sensor Sensor usually has its own information file (best practice)

Corresponding StationXML structure

Channel.Sensor

Object Hierarchy
Superclass

InstrumentComponent

Subclasses

None

Relationships

» Contains Stages

e Is part of an Instrument

10.2. Classes 167

obsinfo, Release 0.110

Attributes

Name Type Required Default Equivalent Sta- | Remarks
tionXML
seed_codes SeedCodes Y None Channel. code

See

ex-

pla-

na-

tion

in

class

Seed-

Codes
Only first two
codes set here.
Orientation set
at channel level.

For the rest of attributes, see superclass :ref: InstrumentComponent <InstrumentComponent>"

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/sensor.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

From sensor information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_
Files/sensors/yNANOMETRICS_T240_SINGLESIDED.sensor.yaml (complete file).

format_version: "0.110"

revision:
date: "2017-11-30"
authors:
- {$ref: "authors/Wayne_Crawford.author.yaml#author"}
sensor:
equipment:
model: "Trillium T240"
type: "Broadband seismometer"
description: "Trillium T240 seismometer, single-sided connection"
manufacturer: "Nanometrics, Inc"
vendor: "Nanometrics, Inc"
seed_codes:

band_base: "B"
instrument: "H"

configuration_default: "SINGLE-SIDED_SN1-399"

(continues on next page)

168 Chapter 10. Developer’s Corner

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#channel
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/sensor.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/sensors/NANOMETRICS_T240_SINGLESIDED.sensor.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/sensors/NANOMETRICS_T240_SINGLESIDED.sensor.yaml

obsinfo, Release 0.110

(continued from previous page)

configuration_definitions:
"SINGLE-SIDED_SN1-399"

equipment:
description: "negative shorted to ground, serial numbers 1-399"
stages:
-$ref: "responses/Trillium_T240_SN1-399-singlesided_theoretical.stage.yaml
w#stage"
"SINGLE-SIDED_SN400plus" :
equipment:
description: "negative shorted to ground, serial numbers 400+"
stages:
-$ref: "responses/Trillium_T240_SN400-singlesided_theoretical.stage.yaml
w#stage"
notes:

- "INSU-IPGP OBS park sphere sensor pairs are: Sphere®1-133, Sphere02-132,"
- "Sphere03-134, Sphere04-138, Sphere®5-137, Sphere®6-830, Sphere®7-136,"
- "Sphere08-829, Sphere09-826"

Class Navigation
InstrumentComponent <==> Stages
SeedCodes

Description

Seed Codes are defined by the FDSN to characterize channels according to their data sources and signal treatment
characteristics.

Python class:

SeedCodes

YAML / JSON label:

seed_codes

10.2. Classes 169

obsinfo, Release 0.110

Corresponding StationXML structure

Channel.code

Object Hierarchy

Superclass

None

Subclasses

None

Relationships

* Belongs to an Sensor

Attributes

quiredfault| alent

Name Type Re- | De- | Equiv- | Remarks

Sta-
tionXML
band_|bakdng Y None| None | For a complete explanation of codes, click on band-code . Called band
with code in the new FDSN nomenclature.
restric-
tions (1
char)
in- string Y None| None | For a complete explanation of codes, click on instrument-code . Called
stru- | with source code in the new FDSN nomenclature.
ment | coektric-
tions (1
char)
ori- | string N None| None | For a complete explanation of codes, click orientation-code . See sub-
en- | with section Geographic orientation subsource codes. This code is assigned
ta- restric- at the channel level. Called subsource orientation code in the new FDSN
tion_¢odens (1 nomenclature. While part of the seed code, it is assigned at the channel
char) level.

170

Chapter 10. Developer’s Corner

http://docs.fdsn.org/projects/source-identifiers/en/v1.0/channel-codes.html#band-code
http://docs.fdsn.org/projects/source-identifiers/en/v1.0/channel-codes.html#source-and-subsource-codes
http://docs.fdsn.org/projects/source-identifiers/en/v1.0/channel-codes.html#source-and-subsource-codes

obsinfo, Release 0.110

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/sensor.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

Class Navigation
Sensor <==
Preamplifier
Description

An optional preamplifier may be part of an OBS instrument. It is an /nstrumentComponent with response stages and
no particular attributes of its own.

Python class:

Preamplifier

YAML / JSON label:

preamplifier

Corresponding StationXML structure

Preamplifier

Object Hierarchy
Superclass

InstrumentComponent

Subclasses

e Filter

10.2. Classes 171

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/sensor.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

obsinfo, Release 0.110

Relationships

¢ Is element of Equipment

» Contains Response Stages

Attributes

None

For the rest of attributes, see superclass :ref: InstrumentComponent <InstrumentComponent>"

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/preamplifier.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

Preamplifier information file https:/www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_
Files/preamplifierss/LCHEAPO_BBOBS .preamplifier.yaml (complete file)

format_version: "0.110"

revision:
date: "2017-11-30"
authors:
- $ref: "authors/Wayne_Crawford.author.yaml#author"
preamplifier:
equipment:

model: "BBOBS-GAIN"

type: "Analog gain card"
description: "INSU BBOBS gain card"
manufacturer: "SIO or IPGP"

vendor: ~

configuration_default: "1x"

configuration_definitions:

"0.225x":
config_description: "0.225x gain"
stages:
- $ref: "responses/INSU_BBOBS_gain®.225_theoretical.stage.yaml#stage"
"1x":
config_description: "1x gain"
stages:

- $ref: "responses/INSU_BBOBS_gainl.O_theoretical.stage.yaml#stage"

172 Chapter 10. Developer’s Corner

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/preamplifier.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/preamplifiers/LCHEAPO_BBOBS.preamplifier.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/preamplifiers/LCHEAPO_BBOBS.preamplifier.yaml

obsinfo, Release 0.110

Class Navigation

InstrumentComponent <==> Stages

Datalogger

Description

A datalogger is the part of an OBS instrument which records the signal after processing. It is an InstrumentComponent
with response stages and attributes such as the global delay correction and the overall sample rate of the instrument.

Python class:

Datalogger

YAML / JSON label:

datalogger

Corresponding StationXML structure

Datalogger

Object Hierarchy

Superclass

InstrumentComponent

Subclasses

None

Relationships

¢ Is element of Equipment

» Contains Stages

10.2. Classes 173

obsinfo, Release 0.110

Attributes

For the rest of attributes, see superclass :ref: InstrumentComponent <InstrumentComponent>"

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/datalogger.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

Datalogger information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/
dataloggers/LC2000.datalogger.yaml :

format_version: "0.110"
revision:
date: "2019-12-20"
authors:
- $ref: 'authors/Wayne_Crawford.author.yaml#author'
notes:
- "Delay correction is hard-coded to 29 samples in LCHEAPO software"

datalogger:

equipment:
model: "CS5321/22"
type: "delta-sigma A/D converter + digital filter"
description: "CS5321/22 delta-sigma A/D converter + FIR digital filter"
manufacturer: "Cirrus Logic"
vendor: "various"

configuration_default: "125 sps"

configuration_definitions:
"62.5sps":
config_description: "62.5 sps"
sample_rate: 62.5
correction: 0.464
stages:
- $ref: "responses/CS5321_FIR1.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR2.stage.yaml#stage"
- $ref: "responses/CS5322_FIR3.stage.yaml#stage"
"125sps":
config_description: "125 sps"
sample_rate: 125

(continues on next page)

174 Chapter 10. Developer’s Corner

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/datalogger.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/dataloggers/LC2000.datalogger.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/dataloggers/LC2000.datalogger.yaml

obsinfo, Release 0.110

(continued from previous page)

correction: 0.232

stages:
- $ref: "responses/CS5321_FIR1.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR3.

"250sps":

config_description: "250 sps"”
sample_rate: 250
correction: 0.116

stages:
- $ref: "responses/CS5321_FIR1.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR3.
"500sps":

config_description: "500 sps"
sample_rate: 500
correction: 0.058

stages:

- $ref: "responses/CS5321_FIR1.

- $ref: "responses/CS5322_FIR2.

- $ref: "responses/CS5322_FIR2.

- $ref: "responses/CS5322_FIR2.

- $ref: "responses/CS5322_FIR2.

- $ref: "responses/CS5322_FIR2.

- $ref: "responses/CS5322_FIR3.
"1000sps":

config_description: "1000 sps"
sample_rate: 1000

correction: 0.029

stages:
- $ref: "responses/CS5321_FIR1.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR2.
- $ref: "responses/CS5322_FIR3.

stage
stage
stage
stage
stage
stage
stage
stage
stage

stage
stage
stage
stage
stage
stage
stage
stage

stage
stage
stage
stage
stage
stage
stage

stage
stage
stage
stage
stage
stage

.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"

.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"

.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"

.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"
.yaml#stage"

10.2. Classes

175

obsinfo, Release 0.110

Class Navigation

InstrumentComponent <==> Stages

Stages

Description

Stages are discrete units in the block diagram of an electronic circuit which perform a specific function and is usually
physically circumscribed to a printed board. An instrument component in obsinfo is usually composed of several
chained stages which connect the output of one stage to the input of the next one. This class implements the change of

individual stages.

It is important that contiguous stages are consistent in two ways:

1. Output units of a stage must be equal to input units of the next stage

2. Output sample rate of a stage must match the input sample rate of the next stage

Python class:

Stages

YAML / JSON label:

stages

Corresponding StationXML structure

Response

Object Hierarchy

Superclass

None

Subclasses

None

176

Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Relations

hips

¢ Contains one or several Stages

* Belongs to an Instrument Component

Attributes

Calculated Attributes

Name | Type

Required

Default

Equivalent StationXML

Remarks

Stage | Array of Stage

N

None

StageFDSN

These attributes do not exist in the YAML/JSON file. They are or may be calculated programmatically to feed corre-
sponding values in the StationXML file or for other purposes.

Name Type| De- | Equivalent | Remarks
fault| Sta-
tionXML
number | num-| None| Stage. Calculated depending on position
ber Number
sensi- num-| None| Instru- Calculated with obspy.obspy_Sensitivity using gain.frequency of first stage
tivity ber mentSensi- | as reference frequency and then recalculated with frequency out of sensitiv-
tivity ity calculation.
to- num-| None| None Calculated as sum of stage sample rates in order to validate against declared
tal_sample beate sample_rate.

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/stages.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

Response stages part of a datalogger information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/
_examples/Information_Files/dataloggers/LC2000.datalogger.yaml

stages:

- $ref:
- S$ref:
- $ref:
- $ref:
- $ref:
- $ref:
- $ref:

"responses/CS5321_FIR1
"responses/CS5322_FIR2.
"responses/CS5322_FIR2.
"responses/CS5322_FIR2.
"responses/CS5322_FIR2.
"responses/CS5322_FIR2.
"responses/CS5322_FIR3.

.stage.yaml#stage"
stage.yaml#stage"
stage.yaml#stage"
stage.yaml#stage"
stage.yaml#stage"
stage.yaml#stage"
stage.yaml#stage"

10.2. Classes

177

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#stage
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#stage
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#response-instrumentsensitivity
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#response-instrumentsensitivity
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#response-instrumentsensitivity
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/stages.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/dataloggers/LC2000.datalogger.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/dataloggers/LC2000.datalogger.yaml

obsinfo, Release 0.110

Class Navigation

InstrumentComponent <==> Stage

ResponselList

Description

A filter can be characterised by the list of impulse responses it yields, instead of its transfer function. These responses
are triples of [frequency (in Hz), amplitude, phase (in degrees)], expressed in a list.

Python class:

ResponseList

YAML / JSON label:

ResponseList

Corresponding StationXML structure

ResponseList

Object Hierarchy
Superclass

Filter

Subclasses

None

Relationships

¢ Is nested in Srage

178 Chapter 10. Developer’s Corner

https://ccrma.stanford.edu/~jos/filters/Transfer_Function_Analysis.html

obsinfo, Release 0.110

Attributes
Name Type Required Default Equivalent Sta- | Remarks
tionXML
1 t Y N ResponseLis-
elements Array of Values: one e%ponse. is
tElement:
[number,
number, Frequency
number] Amplitude
where Phase

first ¢lement =

secon

third

fre-
quency

(in

Hz)

d elmenet =
am-

pli-

tude
element =:
phase

(in

de-

grees)

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

No available example.

Class Navigation

Filter <==

10.2. Classes

179

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#responselistelement
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#responselistelement
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

obsinfo, Release 0.110

Stage

Description

Stages are discrete units in the block diagram of an electronic circuit which perform a specific function and is usually
physically circumscribed to a printed board. An instrument component in obsinfo is usually composed of several
chained stages which connect the output of one stage to the input of the next one.

Python class:

Stage

YAML / JSON label:

Unnamed element of stages array. The array itself has a label stages

Corresponding StationXML structure
Stage
Object Hierarchy

Superclass

None

Subclasses

None

Relationships

* Is element of Stages

¢ Nests one Filter

180 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Attributes
Name Type Required Default Equivalent Sta- | Remarks
tionXML
name string N None e.g. FIR. name In StationXML
this attribute is
at the filter (PZ,
Coeff, FIR, etc.)
level.
description string N None e.g. FIR. De- | In StationXML
scription this attribute
is in the filter
(PolesZeros,
Coeflicients,
FIR, etc.)
input_units IRISUnits Y None e.g. FIR. In- | In StationXML
putUnits this attribute is
at the filter (PZ,
Coeft, FIR, etc.)
level.
output_units IRISUnits Y None e.g. FIR. Out- | In StationXML
putUnits this attribute is
at the filter (PZ,
Coeff, FIR, etc.)
level.
gain: Y None StageGain
number Y None Frequency In Hertz
* frequency
number Y None Value
* value
filter Filter Y None None No filter at-
tribute in
StationXML.
Individual filters
are subsumed in
Stage.
calibration_date | date N None None In StationXML
this attribute is
only found at the
equipment level.
decima- number N 1.0 Decimation.
tion_factor Factor
in- number Y None Decimation. In-
put_sample_rate putSampleRate
delay number N 0.0 Decimation. If not set, will
Delay be calculated as
filter.offset / in-
put_sample_rate
polarity string with val- | Y None None “+” = counts in-
ues “+” and “-” crease when the
input voltage in-
crease, “-” oth-
erwise.
10.2. Classes 181

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#fir
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#response-stage-fir-description
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#response-stage-fir-description
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#response-stage-fir-inputunits
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#response-stage-fir-inputunits
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#response-stage-fir-outputunits
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#response-stage-fir-outputunits
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#stagegain-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#response-stage-stagegain-frequency
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#response-stage-stagegain-value
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#factor-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#inputsamplerate-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#inputsamplerate-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#delay-required

obsinfo, Release 0.110

Calculated Attributes

These attributes do not exist in the YAML/JSON file. They are or may be calculated programmatically to feed corre-
sponding values in the StationXML file or for other purposes.

Name Type| De- | Equiva- | Remarks
fault| lent Sta-
tionXML
stage_sequeirce_nunber number
te-
ger
correc- num- 0.0 | Decima- | This value is calculated as a function of correction in class Datalogger. If
tion ber tion.Correctidelay.correction exists correction=0 for all stages but the last, which has value
= delay.correction. If it does not exist, correction = delay.
out- num- 0.0 | None
put_sample bexte

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/stage.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

Stage information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/
instrumentation/dataloggers/responses/CS5321_FIR3.stage.yaml .

format_version: "0.110"
revision:
date: "2017-11-30"
authors:
- $ref: "authors/Wayne_Crawford.author.yaml#author"

notes: ["From CS5322_Filter.pdf"]

stage:
decimation_factor : 2
gain : {value: 1, frequency: 0}
input_units : { name : "counts", description: "Digital Counts"}

description : "DECIMATION - CS5322 FIR3 (linear phase)"
filter:

$ref: "FIR/CirrusLogic_CS5322_FIR3.filter.yaml#filter"
extras:

DBIRD_response_type : "THEORETICAL"

182 Chapter 10. Developer’s Corner

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/stage.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/dataloggers/responses/CS5321_FIR3.stage.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/dataloggers/responses/CS5321_FIR3.stage.yaml

obsinfo, Release 0.110

Class Navigation

Stages <==> Filter

Filter

Description

The class Filter describes the different types of filters that process the signal in the stages of the instrument components
of an OBS.

Superclass

None

Subclasses

e PolesZeros

* FIR

— Analog

* Coefficients

— ADConversion

— Digital

* Response List

Relationships

Is nested in a Stage

Attributes
Name¢ Type | Re- De- Equivalent Sta- | Remarks
quired | fault | tionXML
type | string| Y None | N/A Possible values: “PolesZeros”, “FIR”, “Coeflicients”, “Ana-
log”, “Digital”, “ADConversion”
off- | num- | Y None | Decima- If delay is not present in the corresponding Stage, it will be
set ber tion.Offset set to offset/input_sample_rate

Depending on the fype, other attributes will be required

10.2. Classes

183

obsinfo, Release 0.110

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

This is the filter information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_
Files/instrumentation/dataloggers/responses/FIR/CirrusLogic_CS5322_FIR3 filter.yaml , which specifies a “FIR”-
type filter.

format_version: "0.110"
revision:
date: "2017-11-30"
authors:
- $ref: "authors/Wayne_Crawford.author.yaml#author"

notes: ["101 coefficients, linear phase filter"]

filter:
type: "FIR"
symmetry: "NONE"
offset: 50
coefficients:

- -3.09982E-6
-2.94483E-5
-9.8002E-5
-1.62383E-4
-1.00029E-4
- 1.20655E-4
2.61935E-4
2.52755E-5
-4.10488E-4
-3.66852E-4
3.7627E-4
8.54597E-4
-3.05213E-5
-0.00127677

1.20655E-4
-1.00029E-4
-1.62383E-4
- -9.8002E-5
-2.94483E-5
-3.09982E-6

184 Chapter 10. Developer’s Corner

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/dataloggers/responses/FIR/CirrusLogic_CS5322_FIR3.filter.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/dataloggers/responses/FIR/CirrusLogic_CS5322_FIR3.filter.yaml

obsinfo, Release 0.110

Class Navigation

Stage <==

==> PolesZeros
==> FIR

==> Coefficients
==> ResponselList
==> ADConversion
==> Digital

==> Analog

ADConversion

Description

StationXML does not specify analog to digital stages. We implement them as a Coefficients filter with one numerator

coeflicient, which is equal to one.

Python class:

ADConversion

YAML / JSON label:

ADConversion

Corresponding StationXML structure

Coeflicients (with no coeflicients except one numerator equal to one)

Object Hierarchy
Superclass

Coefficients

10.2. Classes

185

obsinfo, Release 0.110

Subclasses

None

Relationships

* Is nested in Srage

Attributes
Name Type Required | Default | Equivalent StationXML | Remarks
input_full_scale number | N None None
output_full_scale | number | N None None

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

Filter section in stage information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/
Information_Files/instrumentation/dataloggers/responses/CS5321_FIR1.stage.yaml

filter:
type : "AD_CONVERSION"
input_full_scale : 9 # 9 V pp
output_full_scale : 10485760 #

4FFFFF@Vref and BO0O0OOO@-Vref

Class Navigation

Filter <==

Analog

Description

StationXML does not specify Analog stages which do not have filters. They are implemented here as a PZ filter without

poles or zeroes.

186

Chapter 10. Developer’s Corner

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/dataloggers/responses/CS5321_FIR1.stage.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/dataloggers/responses/CS5321_FIR1.stage.yaml

obsinfo, Release 0.110

Python class:

Analog

YAML / JSON label:

Analog

Corresponding StationXML structure

PolesZeros (with no poles or zeros))

Object Hierarchy
Superclass

PolesZeros

Subclasses
None
Relationships

* Is nested in Stage

Attributes

Name

Type

Required

Default

Equivalent StationXML

Remarks

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

10.2. Classes

187

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

obsinfo, Release 0.110

Example

In stage information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/
instrumentation/preamplifiers/responses/INSU_BBOBS_gain(.225_theoretical.stage.yaml

filter :
type : "Analog"

Class Navigation
Filter <==
Coefficients
Description

The Coeflcients class is a reprentation of a finite impulse response (FIR) filter, which is a filter whose impulse response
(or response to any finite length input) is of finite duration, because it settles to zero in finite time. It is used mainly for
FIR filters which are not symmetric. A symmetric FIR filter should use the FIR class.

The impulse response (that is, the output in response to a Kronecker delta input) of an Nth-order discrete-time FIR filter
lasts exactly N + 1 samples (from first nonzero element through last nonzero element) before it then settles to zero. FIR
filters can be discrete-time or continuous-time, and digital or analog.

For a more detailed discussion, click here.

Python class:

Coeflicients

YAML / JSON label:

Coeflicients

Corresponding StationXML structure

Coeflicients

Object Hierarchy
Superclass

Filter

188 Chapter 10. Developer’s Corner

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/preamplifiers/responses/INSU_BBOBS_gain0.225_theoretical.stage.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/preamplifiers/responses/INSU_BBOBS_gain0.225_theoretical.stage.yaml
https://ccrma.stanford.edu/~jos/filters/Pole_Zero_Analysis_I.html

obsinfo, Release 0.110

Subclasses

* Digital

e ADConversion

Relationships

¢ Is nested in Stage

Attributes
Name Type Required Default Equivalent Sta- | Remarks
tionXML
trans- . N LAPLACE PzTransfer- More info. ..
fer_function_type| List OZ‘Z‘II’IE:;IE (RADI- FunctionType
(RADL ANS/SECOND)
ANS/SECQOND),
LAPLACE
(HERTZ),
DIGITAL
(Z-
TRANFORM)
numera- List of numbers | Y None Numerator
tor_coefficients
denomina- List of numbers | Y None Denominator
tor_coefficients

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

format_version: "0.110"
filter:
type: "Coefficients"
numerator_coefficients:
[1, 0.1, -0.3, 0.6]
denominator_coefficients:
[-0.2, 0.8, 0.4, -0.3]

10.2. Classes 189

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#pztransferfunctiontype-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#pztransferfunctiontype-required
https://ccrma.stanford.edu/~jos/filters/Transfer_Function_Analysis.html
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#numerator
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#denominator
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

obsinfo, Release 0.110

Class Navigation
Filter <==

Digital
Description

StationXML does not have a class for digital stages which are not filters. They are therefore implemented as a Coeffi-
cients filter with one numerator coefficient, equal to 1.

Python class:

Digital

YAML / JSON label:

DIGITAL

Corresponding StationXML structure

Coefficients (with no coeflicients)

Object Hierarchy
Superclass

Coefficients

Subclasses

None

Relationships

¢ Is nested in Srage

190 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Attributes

Name | Type | Required | Default | Equivalent StationXML | Remarks
None

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

No existing file for this example.

filter:
type: "Digital”

Class Navigation

Filter <==

FIR

Description

A finite impulse response (FIR) filter is a filter whose impulse response (or response to any finite length input) is of
finite duration, because it settles to zero in finite time.

The impulse response (that is, the output in response to a Kronecker delta input) of an Nth-order discrete-time FIR filter
lasts exactly N + 1 samples (from first nonzero element through last nonzero element) before it then settles to zero. FIR
filters can be discrete-time or continuous-time, and digital or analog.

Alternatively, FIR filters in obsinfo are also commonly documented using the Coefficients class, though FIR has the
advantage of allowing representation of symmetric FIR coefficients without repeating them.

For a more detailed discussion, click here.

Python class:

FIR

10.2. Classes 191

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://ccrma.stanford.edu/~jos/filters/Pole_Zero_Analysis_I.html

obsinfo, Release 0.110

YAML / JSON label:

FIR

Corresponding StationXML structure

FIR

Object Hierarchy
Superclass

Filter

Subclasses

None

Relationships

* Is nested in Stage

Attributes
Name Type Required Default Equivalent Sta- | Remarks
tionXML
t Y N S t
Symmetty List of values: one R
ODD,
EVEN,
NONE
coefficients List of numbers | N None NumeratorCo-
efficient
coeffi- number N 1.0 NOT USED
cient_divisor

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

192 Chapter 10. Developer’s Corner

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#symmetry-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#numeratorcoefficient
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#numeratorcoefficient
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

obsinfo, Release 0.110

Example

In filter information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/
instrumentation/dataloggers/responses/FIR/TexasInstruments_ ADS1281_FIR1 . filter.yaml

format_version: "0.107"
filter:
type: "FIR"
symmetry: "NONE"
delay.samples: 5
coefficient_divisor: 512
coefficients:
-3
-0
- =25
-0
- 150
- 256
- 150

- 25

Class Navigation
Filter <==
PolesZeros
Description

A Pole-Zero filter. Every digital filter can be specified by its poles and zeros (together with a gain factor). Poles and
zeros give useful insights into a filter’s response. For a more detailed discussion, click here.

Python class:

¢ PolesZeros

YAML / JSON label:

¢ PolesZeros

10.2. Classes 193

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/dataloggers/responses/FIR/TexasInstruments_ADS1281_FIR1.filter.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/dataloggers/responses/FIR/TexasInstruments_ADS1281_FIR1.filter.yaml
https://ccrma.stanford.edu/~jos/filters/Pole_Zero_Analysis_I.html

obsinfo, Release 0.110

Corresponding StationXML structure

No direct correspondence. Mapped into subattribute PolesZeros of attribute Stage.

Object Hierarchy

Superclass

Filter

Subclasses

* Analog

Relationships

* Is nested in Stage

Attributes
Name Type Required Default Equivalent Sta- | Remarks
tionXML
trans- . N LAPLACE PzTransfer- More info...
fer_function_type List of Values: (RADI- FunctionType
_ _typ yp
LAPLACE ANS/SECOND)
(RADI-
ANS/SECOND),
LAPLACE
(HERTZ),
DIGITAL
(Z-
TRANFORM)
Zeros List of numbers | Y None Zero
poles List of numbers | Y None Pole
normaliza- number N None Normalization-
tion_frequency Frequency
normaliza- number N None Normalization- | Frequency
tion_factor Factor at which the
Normalization-
Factor is valid.
This should
be the same
for all stages
and within the
passband, if any.

194

Chapter 10. Developer’s Corner

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#poleszeros
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#stage
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#pztransferfunctiontype-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#pztransferfunctiontype-required
https://ccrma.stanford.edu/~jos/filters/Transfer_Function_Analysis.html
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#zero
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#pole
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#normalizationfrequency-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#normalizationfrequency-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#normalizationfactor-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#normalizationfactor-required

obsinfo, Release 0.110

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

In the filter information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/
instrumentation/sensors/responses/PolesZeros/Trillium_T240_SN400-_generic.filter.yaml .

format_version: "0.110"

revision:
date: "2018-06-01"
authors:
- {$ref: "authors/Wayne_Crawford.author.yaml#author"}
filter:

type: "PolesZeros"
transfer_function_type: "LAPLACE (RADIANS/SECOND)"

Zeros :
- [0.0, 0.0]
- [0.0, 0.0]
- [-72.5, 0.0]
- [-159.3, 0.0]
- [-251, 0.0]
- [-3270.0, 0.0]

poles :
- [-0.017699, 0.017604]
- [-0.017699, -0.017604]
- [-85.3, 0.0]
- [-155.4, 210.8]
- [-155.4, -210.8]
- [-713, 0]
- [-1140, -0]
- [-4300, -0]
- [-5800, -0]
- [-4300, 4400]
- [-4300, -4400]
offset: 0
notes:

- poles et zeros d'un Trillium T240 no de serie 400+
- d'apres le fichier Trillium240_UserGuide_15672R7.pdf de Nanometrics.

extras: None

10.2. Classes 195

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/filter.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/sensors/responses/PolesZeros/Trillium_T240_SN400-_generic.filter.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/instrumentation/sensors/responses/PolesZeros/Trillium_T240_SN400-_generic.filter.yaml

obsinfo, Release 0.110

Class Navigation
Filter <==
Processing
Description

This class has no correlate in StationXML, but it is used for important documentation purposes in obsinfo, and thus
is included as a comment in StationXML. It documents the addition or subtraction of leap seconds to the signal data,
and any kind of clock drift. As is well known, OBS equipment does not have a GPS connection and its clock must be
manually synchronized.

Python class:

Processing

YAML / JSON label:

processing

Corresponding StationXML structure

None

Object Hierarchy

Superclass

None

Subclasses

None

Relationships

¢ Is element of Station
¢ Is composed of LeapSecond

* Is composed of LinearDrift

196 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Attributes
Name Type Required | Default | Equivalent StationXML | Remarks
linear_drift | LinearDrift | N None None
leap_second | LeapSecond | N None None

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/network.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

Processing section of network information file https://gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/
Information_Files/network/BBOBS.INSU-IPGP.network.yaml .

processing:
- clock_corrections:
linear_drift:

time_base: "Seascan MCXO, ~le-8 nominal drift"

reference: "GPS"

start_sync_instrument: 0

start_sync_reference: "2015-04-23T11:20:00"

end_sync_reference: "2016-05-27T14:00:00.2450"

end_sync_instrument: "22016-05-27T14:00:00"
Station <==

==> LinearDrift

==> LeapSecond

LinearDrift

Description

This class has no correlate in StationXML, but it is used for important documentation purposes in obsinfo, and thus is
included as a comment in StationXML. It documents the clock drift. As is well known, OBS equipment does not have
a GPS connection and its clock must be manually synchronized.

10.2. Classes

197

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/network.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/BBOBS.INSU-IPGP.network.yaml
https://gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/BBOBS.INSU-IPGP.network.yaml

obsinfo, Release 0.110

Python class:

Processing

The subclass LinearDrift is not implemented in Python but directly as attributes of class Processing

YAML / JSON label:

processing: clock_correct_linear_drift

Corresponding StationXML structure

None

Object Hierarchy

None

Superclass

None

Subclasses

None

Relationships

¢ Is element of ProcessingClockCorrections

Attributes
Name Type Re- De- Equivalent Sta- | Remarks
quired | fault | tionXML
time_base string Y None | None Time base of OBS
reference string Y None | None Reference used
start_sync_instrumdirmes- Y None | None If set to zero or absent, see below in Calcu-
tamp lated Attributes.
start_sync_referenciimes- Y None | None
tamp
end_sync_instrumetitnes- Y None | None
tamp
end_sync_referenceimes- Y None | None
tamp
198 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Calculated Attributes

Name Type De- Sta- Remarks
fault tionXML
start_sync_instrumentimes- None None If set to O or absent in the file, it is set equal to the
tamp start_sync_reference

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/network.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.
schema.json

Example

Processing section of network information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/
Information_Files/network/BBOBS.INSU-IPGP.network.yaml .

clock_correct_linear_drift:
time_base: "Seascan MCX0, ~le-8 nominal drift"
reference: "GPS"
start_sync_reference: "2015-04-23T11:20:00"
end_sync_reference: "2016-05-27T14:00:00.2450"
end_sync_instrument: "22016-05-27T14:00:00"

Processing <==
LeapSecond
Description

This class has no correlate in StationXML, but it is used for important documentation purposes in obsinfo, and thus is
included as a comment in StationXML. It documents the addition or subtraction of leap seconds to the signal data. As
is well known, OBS equipment does not have a GPS connection and its clock must be manually synchronized.

Python class:

Processing

The subclass LeapSecond is not implemented in Python but directly as attributes of class Processing

10.2. Classes 199

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/network.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/BBOBS.INSU-IPGP.network.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/BBOBS.INSU-IPGP.network.yaml

obsinfo, Release 0.110

YAML / JSON label:

clock_correct_leap_second

Corresponding StationXML structure

None

Object Hierarchy
Superclass

None

Subclasses

None

Relationships

* Is element of ProcessingClockCorrections

Attributes
Name Type Re- De- Equivalent Remarks
quired | fault | StationXML
time timestamp Y None | None
type string aly None A positive leapsecond is a 61 second minute,
char, + or -) a negative one, a 59 sec.
cor- boolean Y None | None
rected_in_end_gync
cor- boolean Y None
rected_in_end_data

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/stage.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

200

Chapter 10. Developer’s Corner

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/stage.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

obsinfo, Release 0.110

Example

Section in network information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/
Information_Files/campaign/LEAP_SECOND.INSU-IPGP.network.yaml .

- clock_correct_leapsecond:
time: "2016-12-31T23:59:60"

type: "+
corrected_in_end_sync: True

Class Navigation
Processing <==
Location
Description

This class serves two purposes. If a single location is specified or if the location code “00” is specified, this will be
geographic location of the corresponding Station in StationXML. The rest of locations serve to group channels that
treat the signal of a single sensor. They can be physically in other geographic locations or not.

Python class:

Location

YAML / JSON label:

location:

Corresponding StationXML structure

None

Location codes appear in channels of a given instrumentation. All locations corresponding to these codes
are specified as individual attributes in the channel section of StationXML.

Object Hierarchy
Superclass

None

10.2. Classes 201

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/campaign/LEAP_SECOND.INSU-IPGP.network.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/campaign/LEAP_SECOND.INSU-IPGP.network.yaml

obsinfo, Release 0.110

Subclasses

None

Relationships

* Is assigned, as a code, to a Channel

* Is assigned to a Station

Attributes
Name Type Required Default Equivalent Sta- | Remarks
tionXML
code string Y None location_code
base LocationBase N None None Individual fields
of base in Sta-
tion attribute.
See Location-
Base for details.
position: Position Y None None
number Y None Latitude Expressed in de-
* lat .
grees/min/sec/frag
of sec.
number Y None Longitude Expressed in de-
* lon .
grees/min/sec/frag
of sec.
number Y None Elevation Expressed in
* elev
meters

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/network.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

Facility section in network information file https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/
Information_Files/network/SPOBS.INSU-IPGP.network.yaml

tions

tions

locations:
"00":
base: {$ref: 'location_bases/SURFACE_DROP.location_base.yaml#location_
—base'}
position: {lon: -32.32504, lat: 37.29744, elev: -2030}
202 Chapter 10. Developer’s Corner

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#channel
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#latitude-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#longitude-required
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#elevation-required
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/network.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/SPOBS.INSU-IPGP.network.yaml
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/network/SPOBS.INSU-IPGP.network.yaml

obsinfo, Release 0.110

Class Navigation

Station <==> Instrumentation

==> LocationBase

LocationBase

Description

LocationBase specifies parameters specific to a type of location.

Python class:

LocationBase

YAML / JSON label:

location_base

Corresponding StationXML structure

None Individual attributes in this class belong to the Station attributes.

Object Hierarchy

Superclass

None

Subclasses

None

Relationships

e Is part of a Location

10.2. Classes

203

obsinfo, Release 0.110

Attributes
Name Type Re- Jl De- | Equivalent StationXML Remarks
quired fault
uncer- dictionary of {lat: num- | Y None| Included in latitude, longitude | In meters. As uncer-
tainties ber, lon:number, elev: and elevation (see Class Loca- | tainties.m in YANL /
number} tion) JSON
depth number Y None| None In meters. As depth.m
in YANL / JSON
geology string Y None| Geology
vault string Y None| Vault
localisa- string Y None| None Added in Comment in
tion_method StationXML

JSON schema

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/network.schema.json

https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

Example

LocationBase information file “https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/_examples/Information_Files/location_b

format_version: "0.107"
revision:

date: "2018-06-01"

authors:

- $ref: "Wayne_Crawford.author.yaml#author"

location_base:

depth.m: 0

geology: "unknown"

vault: "Sea floor"

uncertainties.m: {lon: 200, lat: 200, elev: 20}

localisation_method: "Sea surface release point"

Class Navigation

Location <==

204 Chapter 10. Developer’s Corner

http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#geology
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#vault
http://docs.fdsn.org/projects/stationxml/en/latest/reference.html#station-comment
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/network.schema.json
https://www.gitlab.com/resif/obsinfo/-/tree/master/obsinfo/data/schemas/definitions.schema.json

obsinfo, Release 0.110

10.3 Fundamentals

This is a stub.

Explain here the fundamentals of obsinfo coding:

* Need to follow StationXML as much as possible

— But to add other fields

— And to eliminate redundancy

¢ Correlation and non-correlation of classes to StationXML objects and why

* How an obsinfo file is parsed to obtain an obspy Network object

— Including non-standard field stuffing into comments.

10.3.1 _str_ ()

explain how to write __str__(self, indent=0, n_subclasses=0)

10.3.2 Verify reading of attributes_dict

values in attributes_dicts should be “popped” and the final attributes_dict verified empty to be sure that all inputs are
processed (mostly a debugging process).

For now I'm just doing so on a class-by-class basis, should I write a helper function to do it everywhere (might have to
be able to say where it was called from in case of error).

Wrote a helper function to verify that a dictionary is empty and, if not, to state in which calling function it was not.

For example:

““python
def __init__(self, attributes_dict, higher_modifs={}): self.equipment = Equip-
ment(base_dict.pop(‘equipment’, None)) self.configuration = base_dict.pop(‘configuration’, None)
self.configuration_description = base_dict.pop(‘configuration_description’, self.configuration) seed_dict
= self.base_dict.pop(‘seed_codes’, {}) self.seed_band_base_code = seed_dict.get(‘band_base’, None)
self.seed_instrument_code = seed_dict.get(‘instrument’, None) self._clear_base_dict()
“python

def _clear_base_dict(self):

(NN

if len(self.base_dict) > 0:
raise ValueError(‘base_dict has remaining keys: {}’ .format(list(self.base_dict.keys())))

del self.base_dict

10.3. Fundamentals 205

obsinfo, Release 0.110

10.4 Delay correction

As written in the tutorial, stage-level correction s are calculated by OBSINFO using the filter-level offset, stage-
level delay and datalogger-level correction fields:

* offset can be set at the Filter level. If not, it is set to zero. It is a required field for FIR filters (why not the other
digital filters?)

* delay can be set at the Stage level. If it is not specified, it is set to the Stage Filter’'s offset divided by
the Stage’s ‘input_sample rate. This cannot be done when the Stage is first read, because the Stage’s
input_sample_rate usually depends on the preceding Stages.

e correction depends on the value of datalogger.correction:

— if datalogger.correction is None (i.e., not specified in the information file, correction = delay in
every stage

— otherwise, correction = datalogger.correction in the last stage and correction = 0 in every
other stage.

this calculation can only be made after delay is calculated
The process for calculating delay and correction is as follows:
1. An attribute dictionary is passed to Instrument._init (), which
1. creates Sensor, Datalogger, and PreAmplifier properties using their constructors

* each one creates/contains a Stages() property, but only the Datalogger object gets a correction’
value

e The Stages constructor creates a list of Stage s. Each Stage:
— contains a delay (usually not specfied in the information file, in which case delay = None)"
— contains a Filter" that contains an offset (set to 0 if not specified)

2. calls self.combine_stages(), which combines the Sensor, PreAmplifier and Datal.ogger stages into a
single, ordered list (Sensor stages, then Preamplifier and finally Datalogger)

3. calls self.integrate_stages(), which loops through each stage, checking/creating continuity, cal-
culating delay (in Stage.calculate_delay()) and setting correction = delay if correction is
None

4. creates a list of obspy stages and incorporates them into an obspy Response object (including calculating
Sensitivity)

10.5 Base-Configuration-Modifications

The base-configuration-modifications nomenclature is at the core of customizing instrumentation in obsinfo.

206 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

10.5.1 Classes using base-configure-modification:

e Stage (in obsinfo/instrumentation/stage.py)

¢ Datalogger (in obsinfo/instrumentation/instrument_component.py)

¢ Sensor (in obsinfo/instrumentation/instrument_component.py)

e Preamplifier (in obsinfo/instrumentation/instrument_component.py)
e Instrumentation (in obsinfo/instrumentation/instrumentation.py)

e Location (in obsinfo/helper_classes/location.py)

* Timing changes (not sure it’s enabled yet!)

10.5.2 YAML structure:

{element}:
base:
{element}_propertyl
{element}_property?2
{element}_property3

configuration_default: <str>
configuration_definitions:
{CONFIG_NAME1}:
(configuration_description): <str>
{element}_propertyN

{CONFIG_NAME2}:
(configuration_description): <str>
{element}_propertyM

configuration: <str>
modifications:
{element}_propertyY

{element_specific_modifierl}

*channel_modifications:
<CH-IDENTIFIER>:
base: <file reference>
*configuration: <str>
modifications:
{element}_property

<CH-IDENTIFIER>:

**stage_modifications:
<STAGE-NUMBER-CODE>:
base: <file reference>
*configuration: <str>

(continues on next page)

10.5. Base-Configuration-Modifications

207

obsinfo, Release 0.110

(continued from previous page)

{element}_property

<STAGE-NUMBER-CODE>:

‘> channel_modifications only exist in instrumentation elements

“*% stage_modificationsonlyexistin instrument_component and instrumentation:channel_modifications
elements’

10.5.3 ORDER OF PRIORITY

stage_modifications > channel_modifications > modifications > configuration > base

Multi-level priorities

instrumentation elements contain instrument_component elements, which contain stage elemetns. Each of
these can have configurations and modifications. The order of priority is

I THINK THE ORDER SHOULD BE:

instrumentation_level_declaration > instrument_component_level_declaration > stage_level_declaration

The highest-level configuration is chosen, then all of the modifications are evaluated, from highest to lowest level.

This means that a modification introduced at a lower level will override a higher-level configuration. We do this so that
the high-level user gets out what they put in, but a consequence is that unseen lower-level modifications can override
what the user expected from his-her configuration.

WE RECOMMEND AGAINST USING MODIFICATIONS AT THE LOWER LEVELS, UNLESS IT IS ABSO-
LUTELY SOMETHING THAT SHOULD IMPLEMENTED FOR THE GIVEN ELEMENT.

208 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

10.5.4 Specification in schemas

Every element that uses the base-config nomenclature has the following element declarations in it’'s JSON schema file:

e {properties}

configuration_descriptidg

Name properties required
{element} base
* base
e configuration
e modifications
* notes
base specified properties
* {properties} P prop
e configuration_default
e configurations
modifications none
* base
e configuration
 {properties}
configurations_map map of configuration names (=> | NA
configuration_definition)
configuration_definition none

[=]

There is also a base_properties element that lists all of the properties in a base element. Originally this was used
with al10f to avoid repetition, but al10£ validation errors are impossible to read so we now explicitly state properties
in each element. In each of the other elements, I separate the base_properties from the element-specific properties by
a blank line, for clarity. The base_properties element is now just a reference.

10.5.5 Implementation in the code

When a class has a base-configuration-modification nomenclature, calls to ObsMetaData.get_super() are re-
placed by calls to ObsMetaData.base_configured_element (). The latter evaluates the base: configuration:
modification: structure and replaces values as appropriate before handing off to ObsMetaData.get_super()

base_configured_element () should, in order:

1. Check if the configuration has been updated

2. return the given configuration

3. Apply local (base-config) changes to the configuration

4. Apply higher-level (channel-mods?) changes to the configuration

Here is an explanation of the philosophy, the codes involved and the potential bugs.

Most of the modifications are handled by the ObsMetaData class defined in obsmetadata.py. I'll start by outlining
what is done in obsmetadata.py before going on to specific implementations in the element classes.

10.5. Base-Configuration-Modifications

209

obsinfo, Release 0.110

obsmetadata.py

get_super()

Essentially a “super” dict.get(), adding the possibility to override the returned value by one in modifs_list dicts. With
safe_update() and get_configured_modified_base(), I don’t think I need it anymore

get_configured_modified_base()

def get_configured_modified_base(self, higher_modifs={}): ‘““’ Return a fully configured and modi-
fied base_dict

Values in higher-modifs outrank those in self. Modifications outrank configurations. Uses
safe_update() to only change specified elements.

Args:
self (ObsMetadata): base-configuration-modification dictionary. Must have “base”, can
have “configuration” and “modification” AND NOTHING ELSE.
higher_modifs (dict or ObsMetadata): modifications dictionary. Can have “base”, “con-
figuration” and/or “modification” AND NOTHING ELSE
Returns:
base_dict (:class:"ObsMetadata): fully configured and modified attribute dictionary
Raises:

ValueError: if self or higher_modifs contain keys other than “base”, “configuration”
and/or “modification”

669999

safe_update()

Simplifies combining base elements and their modifications.

def safe_update(self, update_dict, allow_overwrite=True):

Update that only changes explicitly specfied fields

Drills recursively through dicts inside the dict, only changing fields
which are specified in update_dict

Args:
update_dict (dict or :class: ObsMetadata): dictionary containing
fields to update
allow_overwrite (bool): allow a field that was originally a dict
to be overwritten by a field that is not a dict

210 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Files/classes involved

If possible, only involve the classes that directly have the base-channel-modification structure:

locations.py: Locations class
instrumentation.py: Instrumentation class

instrument_component.py: InstrumentComponent superclass and Datalogger, Preamplifier and Sensor
subclasses

stage.py: Stage class

processing.py?: Processing class? or Timing class? (not yet done)

For Locations and Timing the implementation should be fairly easy because at one level. We write here the phi-
losophy/implementation for the ““Instrumentation™ -> channel -> Instrument -> ~ Instrument_Component™ ->
Stages -> ““Stage™ -> Filter chain:

Instrumentation class

»

© »® N A

. input attributes dict is split into base_dict, modifications, channel_modifications and the shortcut

serial_number
The shortcut is inserted into modifications

modifications is split into ic_modifs (keys = datalogger, sensor and preamplifier) and
modifications (the rest).

if modifications['base'] exists, replace ““base_dict’.
if modifications['configuration'] exists, set base_dict["configuration"]
Safe_update base_dict with given configuration
Safe_update result with modifications
Create equipment attribute.
Create channels attribute in a loop for each channel:
a. Get channel_specific attributes from the updated base_dict.
b. Extract channel_modifications corresponding to the given channel
c. Split the selected channel_modifications’ into InstrumentComponent-related and other
e. Safe_update the channel_specific attributes with the non-ic channel-specific modifications

e. Safe_update ic_modifs with ic-related channel modifications. g. Pass attributes and ic_modifs down to
Channel)

10.5.

Base-Configuration-Modifications 211

obsinfo, Release 0.110

Channel class

1. Combine attributes and channel_default into new_attributes_dict
2. Create several attributes 2. Create instrument attribute (Instrument class), passing down

new_attributes_dict and ic_modifications

Instrument class

1. Loop through ic_types: datalogger, sensor, preamplifier

a. Pass attributes_dict[ic_type] and ic_modifications[ic_type] to InstrumentCompo-
nent.construct(attributes_dict, modifs, ic_type)

2. Combine the response stages from the 3 ic_types

3. Calculate overall sensitivity

InstrumentComponent class

base-configuration-modification module
1. Split attributes_dict into

a. creates ic_base_dict, ic_modifs, and ic_response_modifs from
attributes_dict[ic_type]

b. creates higher_modifs from modifs[ic_type], then higher_base, higher_config and
serial_number (shortcut) from higher_modifs

2. Creates instrument attribute as an Instrument, passing down new_attributes_dict,ic_modifications
and channel_modifications

Handling channel_modifications and stage_modifications

channel_modifications and stage_modifications are handled in the Channel and Stage classes, respectively.
These classes update the modifications dictionary with the qualifying dictionaries.

Here is a plot of how dictionaries are passed through the classes, followed by extracts of the actual codes:

212 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

Dict Paths through Classes
I Subnetwork I—I Operator(s) I

Operator(s) I

I Station(s)

Processing I

Location I

I Instrumentation I—IEquipment I

I prTR— Orientation I
Location I

I Instrument I

I Instrument Component I——IEquipment I

Stages I
Stage
I I I Class with no StationXNML equivalent
I Filter I Class with base-modification-configuration

Principal Dict
Modifications Dict

................... Response_ Modifications Dict

subnetwork/subnetwork.py:

def __init__(self, attributes_dict=None, station_only=False): # ... self.stations = Sta-
tions(attributes_dict.get(*“‘stations”, None),

station_only, self.stations_operators)

subnetwork/station.py:

Passes channel_modifications down to Instrumentation

def __init__(self, code, attributes_dict, station_only=False,
stations_operators=None) :
instr_dict = attributes_dict.get('instrumentation', None)
channel_modifs = attributes_dict.get('channel_modifications', {})
if instr_dict:
self.instrumentation = Instrumentation(
instr_dict, self.locations, start_date, end_date,
channel_modifs, self.serial_number)

10.5. Base-Configuration-Modifications 213

obsinfo, Release 0.110

instrumentation/instrumentation.py:

Passes channel_modifications down to Channel

def __init__(self, attributes_dict_or_list, locations,
start_date, end_date, channel_modifs={},
serial_number=None):
...
self.channels = [Channel(label, attributes, locations,
start_date, end_date,
self.equipment.obspy_equipment,
channel_default, channel_modifs)
for label, attributes in das_channels.items()]

where das_channels comes from instr_dict['channels'] and channel_default comes from
das_channels['default']

channel . py:

Selects the channel modifications to pass down to Instrument

Initializing a Channel class calls

def __init__(self, label, attributes, locations,

start_date, end_date, equipment, channel_default={},
channel_modifs={}):

...

selected_channel_modifs = self.get_selected_channel_modifs(

self.channel_id_code, channel_modifs)
self.instrument = Instrument(self.das_channel, selected_channel_modifs)
...

and Channel .get_selected_channel_modifs() is:

Modify this to take ““modifications™ as well?

instrument.py:

def __init__(self, attributes, channel_modifs={}):

for ic_name in ('datalogger', 'sensor', 'preamplifier'):
key = ic_name + '_configuration'
config_selector = attributes.get_configured_element (key, channel_modifs)
ic_obj = InstrumentComponent.dynamic_class_constructor(
component, attributes_dict, channel modifs, config_selector)
setattr(self, ic_name, ic_obj) # equivalent to self.ic_name = ic_obj
...
which I changed to
for ic_type in ('datalogger', 'sensor', 'preamplifier'):

ic_config_key = ic_type + '_configuration'

(continues on next page)

214 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

(continued from previous page)

if ic_type in channel_modifs:
ic_modifs = channel_modifs[ic_type]
Pop out keywords
config = ic_modifs.pop('configuration', None)
sn = ic_modifs.pop('serial_number', None)
base = ic_modifs.pop('base', None)
replace ic by channel_modifs[ic_type][]'base'] if it exists
if base is not None:
logger.info('Replacing D)
attributes[ic_type] = base
if sn is not None:
if 'equipment' in ic_modifs:
if 'serial_number' in ic_modifs['equipment']:
logger.warning('equipment:serial_number and serial_number specified,.
—equipment:serial_number overrides')
else:
ic_modifs['equipment']['serial_number'] = sn
else:
ic_modifs['equipment'] = {'serial_number': sn}
if config is not None:

For now, just replace v0.110 "*_configuration" keyword
if ic_config_key in attributes:
msg = 'attributes[{}]= replaced by {{"{}": {{"configuration": 33},

—format(
ic_config_key, attributes[ic_config key], ic_type, config)
warnings.warn(msg)
logger.warning(msg)
attributes[ic_config_key] = config
config_selector = attributes.get_configured_element(ic_config_key,
channel_modifs)
ic_obj = InstrumentComponent.dynamic_class_constructor(
ic_type, attributes, channel_modifs, config_selector)
setattr(self, ic_type, ic_obj) # equivalent to self.ic_type = ic_obj

in order to handle configurations, serial_numbers and the base” element: For each of the instrument_component s
found in the dictionary, it

* defines a config_key (“datalogger_configuration”, for example)

¢ checks if the instrument_component is named in the channel_modifs dict, if so: - pops out keywords (‘configu-
ration’, ‘serial_number’ and ‘base’)

(shouldn’t need to pop any more, now that modifications are separated)

— if there is a ‘base’ keyword, replace attributes[instrument_component][‘base’] by this one

— ifthereis a ‘serial_number’ keyword, sets channel_modif[instrument_component][‘equipment’][‘serial_number’]

— if there is a ‘configuration’ keyword, set attributes[config_key] to the given value

* uses ObsMetadata.get_configured_element() to choose the configuration between channel_modifs[config_key]
and attributes[config_key]

e creates the instrument component using InstrumentComponent.dynamic_class_constructor(ic_type, attributes,
channel_modifs, config_selector)

where channel_modifs is the selected_channel_modifs in Channel.__init()__

10.5. Base-Configuration-Modifications 215

obsinfo, Release 0.110

But I think it can be simplified now
The handling of the configuration names looks confused to me.

config_selector won’t need ic_name + 'configuration' in v0.111, as the congfiguration will use the same
keyword (configuration) for each InstrumentComponent field.

instrument_component.py:

InstrumentComponent.dynamic_class_constructor(ic_type, attributes, channel_modifs,
config_selector) selects the appropriate component from the attributes dict and passes it on to the spe-
cific component’s dynamic_class_constructor method:

We use this static method rather than __init__()"" in order to directly create and pass back one of the subclasses (Sensor,
Datalogger or Preamplifier)

@staticmethod
def dynamic_class_constructor(component_type, attributes_dict,
channel_modif={}, config_selector=""):
...
selected_config = InstrumentComponent.retrieve_configuration(
component_type, attributes_dict[component_type], config_selector)

if component_type == 'datalogger':
theclass = Datalogger

elif component_type == 'sensor':
theclass = Sensor

elif component_type == 'preamplifier':
theclass = Preamplifier

...

obj = theclass.dynamic_class_constructor(
ObsMetadata(attributes_dict[component_type]),
channel_modif.get(component_type, {}),
selected_config)

return obj

Here is the meat of the dynamic_class_constructor for each compoent (Datalogger, Sensor, or Preamplifier) class

def dynamic_class_constructor(cls, attributes_dict, channel_modif={},
selected_config={}):

stages_list = attributes_dict.get_configured_element (
'stages', {}, selected_config, None)

config_description = attributes_dict.get_configured_element(
"configuration_description', channel_modif, selected_config, '')

stages = Stages(stages_list,
channel_modif.get('stage_modifications', {}),
selected_config.get('stage_modifications', {}),
None)

obj = cls(Equipment(ObsMetadata(attributes_dict.get('equipment', None)),
channel_modif.get('equipment', {}),

(continues on next page)

216 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

(continued from previous page)

selected_config.get('equipment', {})),
stages,
config_description)

return obj

stages.py:

Passes stage_modifications (now in channel_modif and selected_config down to Stage

def __init__(self, attribute_list, channel_modif={}, selected_config={},
correction=None, ext_config_name=None):

...
self.stages = []
for s, i in zip(attribute_list, range(®, len(attribute_list))):
Assign correction value
if correction is None:
correction = None
elif i == len(attribute_list)-1:
correction = correction
else:
correction = 0
self.stages.append(Stage(ObsMetadata(s),
channel_modif,
selected_config,
correction,
i+1,
ext_config_name))
.
stage.py:

Handles the stage_modifications, passing on any values that match the stage_sequence_number:

def __init__(self, attributes_dict, channel_modif_ list={},
selected_config={}, correction=None,
sequence_number=-1, ext_config_name=None):
stage_modif = self.get_stage_modifications(
channel_modif_list, str(sequence_number - 1))
self.configuration = od.base_get_configuration_name(ext_config_name)
kwargs = {'channel _modification': stage_modif,
'selected_configuration': selected_config,
'ext_config_name': ext_config_name}
name = od.base_configured_element('name', default='"', **kwargs)

...

10.5. Base-Configuration-Modifications 217

obsinfo, Release 0.110

10.6 File discovery

information files can import other information files using the $ref operator. This is based on the jsonref standard, but
we have expanded it to also work on YAML._ files and to allow several directories in which to search for the given
filepaths. This is called the datapath and includes the files and urls specified in the ~/.obsinfo file.

The .obsinforc file is created in main/setupObsinfo.py and is read by Datapath objects through a call to ObsinfoCon-
figuration.datapath

I would also like to be able to search in the current file’s directory, but haven’t yet been able to figure out how, although
this was probably the origina jsonRef default.

I think that the subfiles are read through the recursive JsonRef.replace_refs() classmethod, which is called by yaml-
ref.load(), yamlref.loads() and yamlref.load_uri().

Searching for datapath in yamlref.py suggests that its methods are only called in the derived property JsonRef.full_uri
(see below), which is called by the callback method. The callback method appears to be intrinsic to the “proxytypes”
superclass, but I don’t understand it. According to python documents, it is called when its object is garbage collected???

One could possibly be inspired by the jsonschema is True case, because jsonschema always reads from the same di-
rectory. On the other hand, perhaps this directory is passed in the base_uri argument for jsonschema and not for the
others?

[NN

“python @property def full_uri(self):

“ This method/property returns the full uri to reference a $ref object. It’s the heart of how a
datapath is used to either access a local or remote (gitlab) file. All schema files are supposed to be
local, part of the obsinfo distribution

returns updated full uri

raises ValueError
kwargs = self._ref_kwargs
if kwargs[‘jsonschema’]: return urlparse.urljoin(self.base_uri, self.__reference__[“$ref”])
else: dp = kwargs[“datapath”] if not dp:

msg = {’Error in datapath in full_uri, reference: {self.__reference__[“$ref”]}’
logger.error(msg) raise ValueError(msg)

base_uri = Path(dp.build_datapath(self.__reference__[“$ref”]))

tupl = urlparse.urlsplit(str(base_uri)) path = unquote(tupl.path) frag = tupl.fragment new_uri
= Datapath.add_frag(path, frag) # define the uri depending on whether it is remote or not
self.base_uri = new_uri if gitLabFile.isRemote(str(base_uri))

else unquote(base_uri.as_uri())
return(self.base_uri)

(NN

I don’t like that (the file discoveryfiles.py only contains the class Datapath, should rename to datapath.py)

218 Chapter 10. Developer’s Corner

obsinfo, Release 0.110

10.7 ObsMetadata

ObsMetadata is a dict subclass that allows some advanced operations useful for obsinfo_. It has the additional meth-
ods:

 get_configured_element(): substitutes elements with selected or modification values

* get_information_file_format(): determines if an information file is in JSON or YAML format
 get_information_file_type(): determines the information file type (‘network’, etc)

* list_valid_types()

* read_json_yaml()

e read_json_yaml_ref()

* read_json_yaml_ref datapath()

 validate()

¢ validate_date()

¢ validate_dates()

All but the first method seem like they should be in another class. I’'m guessing Luis but them together to make sure
that the output of any read was an ObsMetatdata object, but that should be just as easy to do with another class. ...

This file is a stub.

10.8 Filters

All of the following classes are subclsses of FilterTemplate:
* Coeflicients
¢ FIR
* PolesZeros
* ResponseList
* Polynomial
* ADConversion
* Analog
* Digital

They are NOT subclasses of Filter, which exists only to return one of the FilterTemplate subclasses. I therfore use
Filter.construct() rather than Filter()

Filter.construct figures out which filter subclass to create, creates it and returns it.

The different filter types can be created using Filter.construct(). I think I do this to that we get back an object of one of
the Filter subclasses (PoleZeros,)

10.7. ObsMetadata 219

obsinfo, Release 0.110

10.9 Schema files

* Each file corresponds to a possible information file (with 1-2 exceptions)

* Do not use allOf or anyOf in schema files, unless the things they are comparing/combining are very short. Any
failure just prints out everything downstream and says that couldn’t find a match to allOf or anyOf, which is
about useless for validating information files.

10.10 Logging

Logging is initiated at the top of each file using

import logging
logger = logging.getlogger('obsinfo")

This activates the logger that is initiated by each console script and which writes, by default, INFO level and above to
a file in ~/.obsinfo/ and WARNING level and above to the console.

Each console script should have the following at the top:

from ..helpers import init_logging
logger = init_logging(name)

where name is the script name. File logs will be written to ~/.obsinfo/obsinfolog-{name}.

Here are the arguments for init_logging:

10.11 Testing

Testing is very important to minimize bugs, but also to show how routines should be called. Proper testing avoids the
all-to-frequent case of a code modification breaking previously working parts, if there are enough tests covering these
parts. In general, every method of a class should have a test and, if you discover a bug that is not covered by a test, you
should add a test for it.

We implement testing using the unittest Unit testing framework (https://docs.python.org/3/library/unittest.html). Ide-
ally, every submodule should have a tests directory with a test.py file. This allows you to concentrate on local tests
when you are modifying code, and should keep the test.py codes from being too huge.

A good practice when you modify a function is to see if that function has a test code that will see what you are changing
and, if not, to add it and run the test before and after your modifications.

To run all tests, go into the obsinfo top directory and run
The basic structure of the test.py files is:
..code-block:: python

€999

#!/usr/bin/env python # -- coding: utf-8 -- “”” Test network and station classes
pathlib import Path import unittest import difflib

import warnings from

Third party imports
obsinfo modules from obsinfo.network import (Station, Network)

warnings.simplefilter(“once”) warnings.filterwarnings(“ignore”, category=DeprecationWarning) verbose
= False

220 Chapter 10. Developer’s Corner

https://docs.python.org/3/library/unittest.html

obsinfo, Release 0.110

class NetworkTest(unittest.TestCase): " Class of test methods for network and station objects
Attributes:
testing_path (str): path to datafiles to be tested aside from the examples

level (str): level to be printed test (boolean): determines if this is test mode print_output
(boolean): determines if this is print mode. Both can

coexist.

669999

def setUp(self, test=True, print_output=False, level=None): ‘“*”’ Set up default values and paths
“ self.testing_path = Path(__file_).parent.joinpath(*“data’)

self.level = level self.test = test self.print_output = print_output
def assertTextFilesEqual(self, first, second, msg=None):

with open(first) as f: str_a = f.read()

with open(second) as f: str_b = f.read()

if str_a !=str_b: first_lines = str_a.splitlines(True) second_lines = str_b.splitlines(True)
delta = difflib.unified_diff(

first_lines, second_lines, fromfile=first, tofile=second)
message = “’.join(delta) if msg:
message +=": 7 + msg
self.fail(“Multi-line strings are unequal:n” + message)
def test_A(self): ““’Test of one method™”” ...
def test_B(self): ‘““”’Test of another method””” ...
def test_C(self): “”’Test of yet another method™”” ...
def suite(): return unittest.makeSuite(NetworkTest, ‘test’)

2

if __name__ ==°__main__’: unittest.main(defaultTest="suite’)

10.11. Testing 221

obsinfo, Release 0.110

222 Chapter 10. Developer’s Corner

CHAPTER
ELEVEN

TECHNICAL DOCUMENTATION

11.1 Code Documentation: obsinfo package

11.1.1 Subpackages

obsinfo.network package

Contains the main classes from Network to Station
obsinfo.network module
obsinfo.network.network module
obsinfo.network.Network class
obsinfo.network.Station class
obsinfo.network.Station class
obsinfo.network.station module
obsinfo.network.processing module

obsinfo.instrumentation package

obsinfo.instrumentation.instrumentation module

Instrumentation class

class obsinfo.instrumentation.instrumentation.Instrumentation(attributes_dict, station_locations,
station_location_code,
station_start_date,
station_end_date)
Bases: object

One or more Instrument Channels. Part of an obspy/StationXML Station

Methods convert info files to an instance of this class. No equivalent obspy/StationXML class

223

obsinfo, Release 0.110

A more detailed description the class and its attributes is found in XXX

equipment
Type Equipment

channels
list of channels (Channel)

Type list

__init__ Cattributes_dict, station_locations, station_location_code, station_start_date, station_end_date)
Constructor

attributes_dict may contain a configuration_selection for the instrumentation and the corresponding con-
figs for the components: datalogger, preamplifier and sensor
Parameters
e attributes_dict (dict or ObsMetadata) — instrumentation attributes
e station_locations (Locations) — list of Locations
e station_location_code (str) — station’s location code
e station_start_date (str) — station start date
e station_end_date (str) — station end date
It is assumed an instrumentation’s default location, start date and end_date are the same as its station’s.

class obsinfo.instrumentation.instrumentation.Instrumentations (instrumentations_list)
Bases: obsinfo.helpers.obsinfo_class_list.ObsinfoClassList

A list of Instrumentation objects

__init__ (instrumentations_list)

Parameters instrumentations_list — (list of Instrumentations):

obsinfo.instrumentation.channel module

Channel, Instrument and Operator classes

class obsinfo.instrumentation.channel.Channel (attributes_dict, ic_modifs: dict, location, equipment)
Bases: object

Corresponds to StationXML/obspy Channel plus channel code

das_channel
represents a channel with defaults incorporated
Type ObsMetadata

location
location for this channel
Type Location

start_date
inherited from Station
Type str

end_date
inherited from Station

Type str

instrument
a sensor, a datalogger and an optional preamplifier
Type Instrument

224 Chapter 11. Technical Documentation

obsinfo, Release 0.110

orientation
Type Orientation

comments
Type list of str

__init__(arttributes_dict, ic_modifs: dict, location, equipment)
Constructor
Parameters
e attributes_dict (dict or ObsMetadata) — channel attributes
e ic_modifs (dict or ObsMetadata) — modifications to pass through to Instru-
mentComponents
¢ location (Location) — channel location
¢ equipment (Equipment) — channel equipment

channel_code (sample_rate)
Return channel code for a given sample rate.

Validates instrument and orientation codes according to FDSN specifications (for instruments, just the
length). Channel codes specified by user are indicative and are refined using actual sample rate.
Parameters sample_rate (float) — instrumentation sampling rate (sps)

property seed_code
This is equivalent to channel code for self.instrument.sample_rate

to_obspy ()
Create obspy Channel object
Returns obspy.core.inventory.channel. Channel)
Return type (~class

class obsinfo.instrumentation.channel.Channels (channels_list=None)
Bases: obsinfo.helpers.obsinfo_class_list.ObsinfoClassList

A list of Channel objects

__init__ (channels_list=None)

Parameters channels_list — (list of Instrumentations):

obsinfo.instrumentation.instrument_component module

InstrumentComponent class and subclasses Sensor, Preamplifier, Datalogger. Equipment class

class obsinfo.instrumentation.instrument_component .Datalogger (attributes_dict, higher_modifs={})
Bases: obsinfo.instrumentation.instrument_component.InstrumentComponent

Datalogger Instrument Component.
Obspy ““Datalogger” only contains elements of Equipment, rest is in Response

equipment
equipment attributes
Type Equipment

stages
channel modifications inherited from station
Type Stages

sample_rate
sample rate of given configuration. Checked against actual sample rate

11.1. Code Documentation: obsinfo package 225

obsinfo, Release 0.110

Type float

correction
the delay correction of the component. If a float, it is applied to the last stage and the other stage corrections
are set to 0. If None, each stage’s correction is set equal to its delay
Type float or None

__init__ Cattributes_dict, higher_modifs={})

Parameters
e attributes_dict (dict or ObsMetadata) — InstrumentComponent attributes
¢ higher_modifs (dict or ObsMetadata) — modifications inherited from instru-
mentation
Returns (Datalogger)

class obsinfo.instrumentation.instrument_component.InstrumentComponent (attributes_dict,
higher_modifs={})
Bases: object

InstrumentComponent class. Superclass of all component classes. No obspy/StationXML equivalent, because
they only specify the whole sensor+amplifier+datalogger system

equipment
Type Equipment

stages
Type Stages

obspy_equipment
Type obspy_Equipment

configuration_description
description of configuration to be added to equipment description

Type str
__init__(attributes_dict, higher_modifs={})
Creator.
Parameters

¢ attributes_dict (dict or ObsMetadata) — InstrumentComponent attributes
¢ higher_modifs (dict or ObsMetadata) — modifications inherited from instru-
mentation

class obsinfo.instrumentation.instrument_component.Preamplifier (attributes_dict,
higher_modifs={})
Bases: obsinfo.instrumentation.instrument_component.InstrumentComponent

Preamplifier Instrument Component. No obspy equivalent
Attributes: equipment (Equipment): Equipment information stages (Stages): channel modifica-
tions inherited from station configuration_description (str): the configuration description that
was
selected, added to equipment description
__init__ (attributes_dict, higher_modifs={})

Parameters
e attributes_dict (dict or ObsMetadata) — InstrumentComponent attributes
¢ higher_modifs (dict or ObsMetadata) — modifications inherited from instru-
mentation

class obsinfo.instrumentation.instrument_component.Sensor (attributes_dict, higher_modifs={})
Bases: obsinfo.instrumentation.instrument_component.InstrumentComponent

226 Chapter 11. Technical Documentation

obsinfo, Release 0.110

Sensor Instrument Component. No obspy equivalent

equipment
Equipment information
Type Equipment

seed_band_base_code
SEED base code (“B” or “S”) indicating instrument band. Must be modified by obsinfo to correspond
to output sample rate. Actual SEED base code is determined by FDSN standard <http://docs.fdsn.org/
projects/source-identifiers/en/v1.0/channel-codes.html>"
Type str (len 1)

seed_instrument code
SEED instrument code, determined by FDSN standard <http://docs.fdsn.org/projects/source-
identifiers/en/v1.0/channel-codes.html>
Type str (len 1)

stages
channel modifications inherited from station

Type Stages
__init__ (attributes_dict, higher_modifs={})
Create Sensor instance from an attributes_dict
Parameters
e attributes_dict (dict or ObsMetadata) — InstrumentComponent attributes
¢ higher_modifs (dict or ObsMetadata) — modifications inherited from instru-
mentation

obsinfo.instrumentation.response_stages module

Stages and Stage classes

class obsinfo.instrumentation.stages.Stages (attribute_list=None, higher_modifications={},
correction=None)
Bases: obsinfo.helpers.obsinfo_class_list.ObsinfoClassList

Ordered list of Stage.

Has a custom constructor using a list of attribute_dicts, and custom input_units(), output_units and to_obspy()
methods

stages
Type list of objects of Stage

__init__ (attribute_list=None, higher_modifications={}, correction=None)

Constructor
Parameters
e attribute_list (list of dicts) — information file dictionaries for each
stage
e higher_modifications (dict or ObsMetadata) — modifications to pass down
to Stage

» correction (float) — used only for datalogger: the delay correction for the
entire instrument

property calibration_dates
property input_units

property output_units

11.1. Code Documentation: obsinfo package 227

http://docs.fdsn.org/

obsinfo, Release 0.110

obsinfo.instrumentation.filter module

Filter classes: - Coefficients - FIR - PolesZeros - ResponseList - Polynomial (never tested) - ADConversion (subclass
of PolesZeros) - Analog (subclass of PolesZeros) - Digital (subclass of Coefficients)

obsinfo.instrumentation.equipment module

InstrumentComponent class and subclasses Sensor, Preamplifier, Datalogger. Equipment class

class obsinfo.instrumentation.equipment.Equipment (attributes_dict)
Bases: obspy.core.inventory.util.Equipment

Equipment.

Equivalent to :class: obspy.core.inventory.util. Equipment

type

Type str
channel_modif

Type str
selected_config

Type str
description

Type str
manufacturer

Type str
model

Type str
vendor

Type str
serial_number

Type str

installation_date
Type str in date format

removal_date
Type str in date format

calibration_dates
Type str in date format

resource_id
Type str

obspy_equipment
Type class obspy.core.inventory.equipmentEquipment

__init__(attributes_dict)
Constructor
Parameters attributes_dict (dict or ObsMetadata) — attributes of component

to_obspy ()
Convert an equipment (including the equipment description in components) to its obspy object
Returns (obspy.core.invertory.util.Equipment)

228 Chapter 11. Technical Documentation

obsinfo, Release 0.110

obsinfo.instrumentation.location module
obsinfo.instrumentation.orientation module

Orientation class

class obsinfo.instrumentation.orientation.Orientation(attributes _dict)
Bases: object

Class for sensor orientations. No channel modifs. Cannot change orientation as it is part of the channel identifiers.
Azimuth and dip can be changed Orientation is coded by FDSN standard <http://docs.fdsn.org/projects/ source-
identifiers/en/v1.0/channel-codes.html>
These are the dips to give for vertical/hydrophone channels:
-90°:
* vertical seismometer with positive voltage corresponding to upward motion (typical seis-
mometer)
* hydrophone with positive voltage corresponding to increase in pressure (compression)

90°: vertical seismometer with positive voltage corresponding to
downward motion (typical geophone),

» hydrophone with positive voltage corresponding to decrease in pressure (dilatation)
code
Single-letter orientation code

Type str

azimuth
azimuth in degrees, clockwise from north
Type FloatWithUncert

dip
dip in degrees, -90 to 90, positive=down, negative=up
Type FloatWithUncert

__init__ Cattributes_dict)
Constructor
Parameters attributes_dict (dict or ObsMetadata) — Orientation dictionary with key =
orientation code

obsinfo.obsMetadata package
obsinfo.obsMetadata.obsmetadata module

obsinfo.main package

obsinfo.main.makeStationXML module
obsinfo.main.print module
obsinfo.main.setupObsinfo module
obsinfo.main.validate module

obsinfo.misc package

11.1. Code Documentation: obsinfo package 229

obsinfo, Release 0.110

obsinfo.misc.configuration module

class obsinfo.misc.configuration.Singleton(cls)
Bases: object

Class to implement singleton pattern design in Python

Instance()

obsinfo.misc.const module

Exit values as constants as per UNIX BSD standard

obsinfo.misc.discoveryfiles module

class obsinfo.misc.discoveryfiles.Datapath(datapath=None)
Bases: object

Class to discover where information files are stored.

datapath_list
directories where information files will be searched, in sequence
Type list of str

infofiles_path
same as datapath_list, used by validate, kept for compatibility
Type list of str

validate_path
one unique path to validation schemas

Type str

static add_frag(path, frag)
Add the path and the frag to restore a partial or complete uri
Parameters
» path (str) — path portion of uri, possibly with other elements but without frag
» frag (str) — fragment portion of uri
Returns (str)L path with frag

build_datapath(file)
Create list of directories which may have data or schemas
1) If the file path is absolute, return the file itself.
2) If path starts by ./ or ../ complete to an absolute path using working directory
3) If the file has no prefix discover whether file exists in the datapath list. Use the first found file.

Parameters file (str or path) - filename of file to be found
Returns found file as string
Raises FileNotFoundError —

230 Chapter 11. Technical Documentation

obsinfo, Release 0.110

obsinfo.misc.printobs module

Functions to print obsinfo objects

class obsinfo.misc.printobs.PrintObs
Bases: object

Collection of methods to print obsinfo objects at different levels of depth. All methods are static.
None

static print_component (obj, level="all")
Prints comoponent information and continues if level is not “component” or “channel”.

If level is not “channel” detailed equipment information is not printed.
Parameters level (str) — determines to which level the obsinfo object will be printed

static print_instrumentation(obj, level="all")
Prints instrumentation information and continues if level is not “instrumentation”.

Iflevel is “response” or “all” response stages information will be printed (if it exists). Recall at this point all
the response is gathered in instrument.stages.sgates If level is “all” or “filter” (i.e. not “response”)
all information will be printed (only filter is left at this point...)

Parameters level (str)— determines to which level the obsinfo object will be printed

static print_network(obj, level='all")
Prints network information and continues if level is not “network”.
Parameters level (str) — determines to which level the obsinfo object will be printed

static print_station(obj, level='all")
Prints station information and continues if level is not “station”.
Parameters level (str) - determines to which level the obsinfo object will be printed

obsinfo.misc.remoteGitLab module

class obsinfo.misc.remoteGitLab.gitLabFile
Bases: object

Provide the methods to use the gitlab API to read a remote file and decode it
None

static get_gitlab_file(uri, read_file=True)
Get the file content pointed at by uri and decode it.

Uses b64 first to get the remote file and convert to a byte string, and then utf-8 to convert to regular string.
Parameters
e uri (string or path-like)— urito read
¢ (bool) (read_file)—If true, reads the content. If not, simply checks if the file
exists
Returns read content
Return type (str)
Raises: FileNotFoundError, ValueError

static isRemote (file)
Checks if scheme means file is remote.
Parameters file (str) - filename to be checked, with complete uri
Returns boolean. True if remote, False otherwise

11.1. Code Documentation: obsinfo package 231

obsinfo, Release 0.110

obsinfo.misc.yamiref module

Module to read and parse YAML or JSON files, locally or remotely (gitlab only)
jsonref with YAML reading added.

copied directly from jsonref v0.2, with added routines _yaml_load and _yaml_loads replacing json.load
and json.loads Added/modified lines are marked “# WCC”

class obsinfo.misc.yamlref.JsonLoader (store=(), cache_results=True)
Bases: object

Provides a callable which takes a URI, and returns the loaded JSON referred to by that URI. Uses requests if
available for HTTP URIs, and falls back to urllib. By default it keeps a cache of previously loaded documents.
Attributes:
* store: pre-populated dictionary matching URIs to loaded JSON documents used as
cache

e cache_results (boolean): if this is set to false, the internal cache of

* loaded JSON documents is not used
__init__(store=(), cache_results=True)

get_json_or_yaml (uri, **kwargs)
Open either a local file, if uri scheme is file or a remote one, calling a gitlab method which implements
the gitlab API (version 4)
Parameters
e uri (path-like object, string or byte string) — The URI of the
JSON or YAML document to load
* kwargs (dict) — Keyword arguments passed to json.loads()
Returns dictionary of parsed YAML or JSON formats
Raises FileNotFoundError, IOError, OSError

class obsinfo.misc.yamlref.JsonRef (refobj, base_uri=", loader=None, jsonschema=False,
load_on_repr=True, _path=(), _store=None, datapath=None)
Bases: proxytypes.LazyProxy

A lazy loading proxy to the dereferenced data pointed to by a JSON Reference object.
Attributes:
» _ reference__: dictionary object referenced to by a $ref
* base_uri: object of type Path which is used to build the full uri
* loader: aloader object (a callable) such as JsonLoader , to load a JSON or YAML file/string
* jsonschema = Flag to turn on JSON Schema mode
* load_on_repr = If set to False, repr() call on a JsonRef object will not cause the refer-
ence to be loaded if it hasn’t already. (defaults to True)
* path = list of string keywords: keywords of different $ref in lists or dictionaries
* store = dictionary of cached objects used to prevent reading files over again
 datapath = object of Datapath, stores directories to search for files
__init__(refobj, base_uri=", loader=None, jsonschema=False, load_on_repr=True, _path=(), _store=None,
datapath=None)

callback()
Callback from proxytypes, LazyProxy.

Resolves the pointer (part of the dictionary read from the info file) that is incorporated instead of $ref.
Updates base_uri
Returns
the fragment portion of the base_doc, which has already had its $ref replaced.

property full_uri
This method/property returns the full uri to reference a $ref object. It’s the heart of how a datapath is

232 Chapter 11. Technical Documentation

obsinfo, Release 0.110

used to either access a local or remote (gitlab) file. All schema files are supposed to be local, part of the
obsinfo distribution

Returns updated full uri

Raises ValueError

classmethod replace_refs(obj, _recursive=False, **kwargs)
Returns a deep copy of obj with all contained JSON reference objects replaced with JsonRef instances.
Parameters
¢ obj (JSONRef or collection *) — If a JSON reference object, a JsonRef instance
will be created. If not, a deep copy of it will be created with all contained JSON
reference objects replaced by JsonRef instances
» recursive (bool) — Process $ref recursively
¢ kwargs (dict) — Keyword arguments passed to json.loads()
Returns the information in $ref file
Return type obj ():class:JsonRef)
Raises TypeError, ValueError through JsonRef object creation-—

kwargs include:

base_uri (Path): URI to resolve relative references against. Can be remote (https://) or lo-
cal(file://) This is how datapath is implemented

datapath (Datapath): object to implement file discovery in a list of directories

loader (loader object such as JsonLoader): Callable that takes a URI and returns the parsed
JSON (defaults to global jsonloader, a JsonLoader instance)

jsonschema (bool): Flag to turn on JSON Schema mode, which means the file is a schema file.
This makes ‘id’ keyword to change the base_uri for references contained within the object,
such as $ref: ‘#/definitions’

load_on_repr (bool): If set to False, repr() call on a JsonRef object will not cause the refer-
ence to be loaded if it hasn’t already. (defaults to True)

resolve_pointer (document, pointer)
Resolve a json pointer pointer within the referenced document.
Parameters
* document - the referent document
* pointer (str) — a json pointer URI fragment to resolve within it
Returns part of document dictionary pointed at by pointer

exception obsinfo.misc.yamlref.JsonRefError (message, reference, uri=", base_uri=", path=(),
cause=None)
Bases: Exception

Create exception for JSONRef
Attributes:
* message (str): message to print with exception
* reference (str): reference where exception occurred
* uri (str or path-like): uri of file being processed
* base_uri: (str or path-like): base_uri (complement) of file being processed
* path = list of string keywords: keywords of different $ref in lists or dictionaries
* cause (str): cause of exception
__init__ (message, reference, uri=", base_uri=", path=(), cause=None)

obsinfo.misc.yamlref.dump(obj, fp, **kwargs)
Serialize obj as a JSON formatted stream to file-like fp

JsonRef objects will be dumped as the original reference object they were created from.
Parameters
¢ obj — Object to serialize
e fp (File-1ike object) -

11.1. Code Documentation: obsinfo package 233

https://
file://
http://json-schema.org/latest/json-schema-core.html#anchor25

obsinfo, Release 0.110

* kwargs (dict) — Keyword arguments for json.dumps ()

obsinfo.misc.yamlref.dumps (obj, **kwargs)
Serialize obj, which may contain JsonRef objects, to a JSON formatted string. JsonRef objects will be dumped
as the original reference object they were created from.
Parameters
* obj — Object to serialize
e kwargs (dict) — Keyword arguments for json.dumps ()
Returns dumped string

obsinfo.misc.yamlref.load(fp, base_uri=", loader=None, jsonschema=False, load_on_repr=True,
datapath=None, **kwargs)
Drop in replacement for json.load(), where JSON references are proxied to their referent data.

The difference between load and loads is that the first uses a file-like object and the second a string.
Parameters

e fp (File-1ike object) — File-like object containing JSON document

* base_uri (object of type Path) — URI to resolve relative references against. Can be
remote (https://) or local(file://) This is how datapath is implemented

¢ datapath (object of type Datapath) — object to implement file discovery in a list of
directories

* loader (a loader object such as JsonLoader) — Callable that takes a URI and returns
the parsed JSON (defaults to global jsonloader, a JsonLoader instance)

* jsonschema (boolean)-Flagto turn on JSON Schema mode, which means the file is a
schema file. This makes ‘id’ keyword to change the base_uri for references contained
within the object, such as $ref: ‘#/definitions’

* load_on_repr (boolean) — If set to False, repr() call on a:class:JsonRef object
will not cause the reference to be loaded if it hasn’t already. (defaults to True)

* kwargs (dict) — This function takes any of the keyword arguments from JsonRef.
replace_refs(). Any other keyword arguments will be passed to _yaml_load()

Returns dictionary of parsed YAML or JSON formats

obsinfo.misc.yamlref.load_uri (uri, base_uri=None, datapath=None, loader=None, jsonschema=False,
load_on_repr=True)

Load JSON data from uri instead of file-like object or string. with JSON references proxied to their refer-
ent data. Not used in obsinfo.

Parameters

e uri (string or path-like object)— URI to fetch the JSON from

* base_uri (Path) — URI to resolve relative references against. Can be remote (https://)
or local(file://) This is how datapath is implemented

¢ datapath (Datapath) — object to implement file discovery in a list of directories

* loader (loader object such as JsonLoader) — Callable that takes a URI and returns
the parsed JSON (defaults to global jsonloader, a JsonLoader instance)

* jsonschema (bool) — Flag to turn on JSON Schema mode, which means the file is a
schema file. This makes ‘id’ keyword to change the base_uri for references contained
within the object, such as $ref: ‘#/definitions’

¢ load_on_repr (bool) — If set to False, repr() call on a class:JsonRef object will
not cause the reference to be loaded if it hasn’t already. (defaults to True)

Returns parsed YAML or JSON formats
Return type newref (dict)

obsinfo.misc.yamlref.loads (s, base_uri=", loader=None, jsonschema=False, load_on_repr=True,
datapath=None, recursive=True, **kwargs)
Drop in replacement for json.loads(), where JSON references are proxied to their referent data.

234 Chapter 11. Technical Documentation

https://
file://
http://json-schema.org/latest/json-schema-core.html#anchor25
https://
file://
http://json-schema.org/latest/json-schema-core.html#anchor25

obsinfo, Release 0.110

The difference between load and loads is that the first uses a file-like object and the second a string.
Parameters
¢ s (str)— Input JSON document
e base_uri (Path) — URI to resolve relative references against. Can be remote (https://)
or local(file://) This is how datapath is implemented
» datapath (Datapath) — object to implement file discovery in a list of directories
¢ loader (loader object such as JsonLoader) — Callable that takes a URI and returns
the parsed JSON (defaults to global jsonloader, a JsonLoader instance)
¢ jsonschema (bool) — Flag to turn on JSON Schema mode, which means the file is a
schema file. This makes ‘id’ keyword to change the base_uri for references contained
within the object, such as $ref: ‘#/definitions’
* load_on_repr (bool) — If set to False, repr() call on a JsonRef object will not
cause the reference to be loaded if it hasn’t already. (defaults to True)
e kwargs (dict) — Any of the keyword arguments from JsonRef.replace_refs().
Any other keyword arguments will be passed to _yaml_load()
Returns decoded JSON or YAML
Return type dic (dict)

obsinfo.tests package

obsinfo.tests.remoteGithub module

obsinfo.tests.remoteGithub.constructURL (user="'404', repo_name='404', path_to_file="404', url='404")

obsinfo.tests.test module
obsinfo.tests.testmain module

obsinfo.addons package

obsinfo.addons.LCHEAPO module

Write extraction script for LCHEAPO instruments (proprietary to miniseed)

obsinfo.addons.LCHEAPO.process_script (network_code, station, station_dir, distrib_dir, input_dir=".",
output_dir="miniseed_basic', include_header=True)
Writes script to transform raw OBS data to miniSEED
Parameters
¢ network_code (str)— FDSN network_code
e ((station) — class: ~obsinfo.Station): the station to process
e station_dir (str) - the base directory for the station data
e distrib_dir (str) — directory where the Icheapo executables and property files are
found

e input_dir (str) - directory beneath station_dir for LCHEAPO data
e output_dir (str) — directory beneath station_dir for basic miniseed]
* include_header (bool) — include the header that sets up paths (should be done once)

11.1. Code Documentation: obsinfo package 235

https://
file://
http://json-schema.org/latest/json-schema-core.html#anchor25

obsinfo, Release 0.110

obsinfo.addons.SDPCHAIN module

Generate scripts needed to go from basic miniSEED to data center ready

obsinfo.addons.SDPCHAIN.process_script (station, station_dir, distrib_dir="/opt/sdpchain’,

input_dir="miniseed_basic', corrected_dir='miniseed_corrected’,
extra_commands=None, include_header=True,
SDS_uncorr_dir="SDS_uncorrected’,

SDS _corr_dir='SDS_corrected’,

SDS _combined_dir='SDS_combined")

Writes OBS data processing script using SDPCHAIN software

Parameters

L]

station — an obsinfo.station object

station_dir - base directory for the station data

input_dir - directory beneath station_dir for input (basic) miniseed data
[‘miniseed_basic’]

corrected_dir — directory beneath station_dir for output (corrected) miniseed data
[‘miniseed_corrected’]

SDS_corr_dir - directory beneath station_dir in which to write SDS structure of cor-
rected data (ideally ../SOMETHING if ms2sds could write all to the same directory)
SDS_uncorr_dir — directory beneath station_dir in which to write SDS structure of
uncorrected data (ideally ../SOMETHING if ms2sds could write all to the same direc-
tory)

include_header — whether or not to include the bash script header (‘#!/bin/bash’) at
the top of the script [True]

distrib_dir — Base directory of sdpchain distribution [‘/opt/sdpchain’]

The sequence of commands is:
1. optional proprietary format steps (proprietary format -> basic miniseed, separate)
2. optional extra_steps (any cleanup needed for the basic miniseed data, should either overwrite the
existing data or remove the original files so that subsequent steps only see the cleaned data)

B~ W

. ms2sds on basic miniseed data
. leap-second corrections, if necessary

5. msdrift (creates drift-corrected miniseed)

obsinfo.addons.LC2SDS module

Write a script to convert LCHEAPO data to SDS* using the lcheapo™* python package

Includes clock drift and leap-second correction Script is a BASH shell script *SDS = SeisComp Data Structure **THIS
PROGRAM DOES NOT CREATE DATA-CENTER QUALITY DATA:

* drift correction is calculated for each day, not each record

* does not set drift correction record header flags

¢ does not fill in record header time_correction field

obsinfo.addons.LC2SDS.process_script (network_code, stations, station_data_path, input_dir="",

output_dir="./", include_header=True, no_drift_correct=False)

Writes script to transform raw OBS data to SeisComp Data Structure

Parameters

¢ network_code (str) — FDSN network_code

* stations (list of Station) — the stations to process

¢ station_data_path (str) — the base directory beneath the station data dirs
e input_dir (str) - directory beneath station_dir for LCHEAPO data

236

Chapter 11. Technical Documentation

obsinfo, Release 0.110

e output_dir (str) — directory beneath station_dir for SDS directory
¢ include_header (bool) — include the header that sets up paths (should be done once)
e no_drift_correct (bool)— Do NOT drift correct

11.1.2 obsinfo.print_version module

11.1.3 obsinfo.version module

11.1. Code Documentation: obsinfo package 237

obsinfo, Release 0.110

238 Chapter 11. Technical Documentation

CHAPTER
TWELVE

¢ 0.110.11:

e 0.110.12:

* 0.110.13:

* 0.110.14:

* 0.110.15:

e 0.110.16:

CHANGELOG

Added obsinfo-makescripts-LC2SDS

— Fixed bug in clock correction reading (leapsecond and drift)
— Made obsinfo-makescripts-LC2SDS write to campaign directory by default
— Fixed some (not all) StationXML bugs:
% Made clock correction Comments using JSON
* Removed restrictedStatus="unknown’ (invalid) from StationXML
% Fixed bugs in Decimation filters and stage #s
% Standardized uncertainties in Poles, Zeros, Elevation, Dip, Azimuths
— Bugs that will probably have to wait for version 0.111:

% instrumentation serial number and configurations not accounted for

— Made all obsinfo-test cases work
— Added “‘serial_number” to station level (temporary fix before v 0.111)

— Updated JSON schema to draft07, allowing more precise/compact information on mutiple-choice
errors (e.g., different types of filter)

— Added StationXML test case and made it work

— made python -m unittest discover work

— corrected JSON validation schema for orientation_code
— improved azimuth.deg and dip.deg schema definitions

— Fixed a bug in reporting schema validation errors (in obsmetadata.py) introduced when shifting to
draft07

— Reduced a bug when a jsonref points to an inexistent pointer within a file

— Uses Python 3.8-dependent syntax despite only requiring Python 3!

239

obsinfo, Release 0.110

— Clean up information file validation, removing many redundancies in main/validate.py and hopefully
fixing bug where schema files lacking “.schema.yaml” are searched for

Requires Python 3.7 syntax and only uses 3.7-dependent syntax

post2: streamlines obsinfo-makescripts_LC2SDS’s output
* 0.110.17:

Improvements to channel_modifications:
% Make reading a new sensor, datalogger or preamplifier work
% Enable shortcuts for entering serial number

% Updated documentation

Added developer and information_file documentation in channel_modifications/

Moved tests up to united top-level directory

offset can be a non-integer
* 0.110.18:

Added datacite information file

Added schema and validation of datacite, author, location_base, network_info and operator infor-
mation files

Cleaned up some information file validation glitches

240 Chapter 12. CHANGELOG

CHAPTER
THIRTEEN

INDICES AND TABLES

* genindex
* modindex

¢ search

241

obsinfo, Release 0.110

242 Chapter 13. Indices and tables

o

obsinfo.
obsinfo.
obsinfo.
obsinfo.
obsinfo.
obsinfo.
obsinfo.

obsinfo.
obsinfo.
obsinfo.
obsinfo.
obsinfo.
obsinfo.
obsinfo.
obsinfo.
obsinfo.
obsinfo.
obsinfo.

addons.LC2SDS, 236
addons.LCHEAPO, 235
addons.SDPCHAIN, 236
instrumentation.channel, 224
instrumentation.equipment, 228
instrumentation.filter, 228
instrumentation.instrument_component,
225
instrumentation.instrumentation, 223
instrumentation.orientation, 229
instrumentation.stages, 227
misc.configuration, 230
misc.const, 230
misc.discoveryfiles, 230
misc.printobs, 231
misc.remoteGitLab, 231
misc.yamlref, 232
tests.remoteGithub, 235

version, 237

PYTHON MODULE INDEX

243

obsinfo, Release 0.110

244 Python Module Index

INDEX

Sy mbols sinfo.instrumentation.equipment. Equipment
__init__Q (obsinfo.instrumentation.channel. Channel attribute), 228
method), 225 calibration_dates (ob-

__init__Q (obsinfo.instrumentation.channel. Channels sinfo.instrumentation.stages.Stages . property),

method), 225 227 . .

__init__QO (obsinfo.instrumentation.equipment.EquipmenFallbaCkO (obsinfo.misc.yamlref.JsonRef method), 232
method), 228 Channel (class in obsinfo.instrumentation.channel), 224

__init__Q (obsinfo.instmmentation.instrument_componeﬁlhm;?gggfie() (obsinfo.instrumentation.channel. Channel
method), 226 method), 225

__init__Q (obsinfo.instrumentation.instrument_componef P RRMSAnINELh g5 pfp- instrumentation.equipment. Equipment
method), 226 attribute), 228

__init__Q) (obsinfo.instrumentation.instrument_componePRPOEASIificfass in obsinfo.instrumentation.channel),
method), 226 223

init__(Q) (obsinfo.instrumentation.instrument_compon ebgamel}s (obsinfo.instrumentation.instrumentation.Instrumentation

method), 2277 attribute), 224
__init__Q) (obsinfo.instrumentation.instrumentation.Instrifffitatibpbsinfo-instrumentation.orientation. Orientation
method), 224 attribute), 229
__init__Q (obsinfo.instrumentation. instrumentation.Instrﬁ%%?&/k@bs info.instrumentation.channel. Channel at-
method), 224 tribute), 225
__init__Q (obsinfo.instrumentation.orientation. OrientatiGPEiguration_description (ob-
method), 229 sinfo.instrumentation.instrument_component.InstrumentCompone
__init__Q (obsinfo.instrumentation.stages.Stages attribute), 226
method), 227 constructURL() (in module ob-
__init__Q (obsinfo.misc.yamlref.JsonLoader method), .sinfo.tests.r emoteGithub), 235
232 correction (obsinfo.instrumentation.instrument_component.Datalogger
__init__Q) (obsinfo.misc.yamliref.JsonRef method), 232 attribute), 226
__init__QO (obsinfo.misc.yamlref.JsonRefError D

method), 233
das_channel (obsinfo.instrumentation.channel. Channel

A attribute), 224
add_frag() (obsinfo.misc.discoveryfiles.Datapath static Datalogger (class in ob-
method), 230 sinfo.instrumentation.instrument_component),
azimuth (obsinfo.instrumentation.orientation.Orientation 225
attribute), 229 Datapath (class in obsinfo.misc.discoveryfiles), 230
datapath_list (obsinfo.misc.discoveryfiles.Datapath
B attribute), 230
build_datapath() (ob- description (obsinfo.instrumentation.equipment. Equipment

sinfo.misc.discoveryfiles.Datapath method), . .attrz?)ute), 228
230 dip (obsinfo.instrumentation.orientation.Orientation at-

tribute), 229
C dump) (in module obsinfo.misc.yamlref), 233

calibration_dates (ob- dumps () (in module obsinfo.misc.yamlref), 234

245

obsinfo, Release 0.110

E L

end_date (obsinfo.instrumentation.channel.Channel at- load() (in module obsinfo.misc.yamlref), 234

tribute), 224 load_uri () (in module obsinfo.misc.yamlref), 234
Equipment (class in obsinfo.instrumentation.equipment), loads() (in module obsinfo.misc.yamlref'), 234
228 location (obsinfo.instrumentation.channel. Channel at-

equipment (obsinfo.instrumentation.instrument_component.Dataloggatbute), 224
attribute), 225
equipment (obsinfo.instrumentation. instmment_componenMstmmentComponent

attribute), 226 manufacturer (obsinfo.instrumentation.equipment. Equipment
equipment (obsinfo.instrumentation.instrument_component.Sensor giribute), 228
attribute), 227 model (obsinfo.instrumentation.equipment. Equipment at-
equipment (obsinfo.instrumentation.instrumentation.Instrumentation gripyge), 228
attribute), 224 module
F obsinfo.addons.LC2SDS, 236
obsinfo.addons.LCHEAPO, 235
full_uri (obsinfo.misc.yamlref.JsonRef property), 232 obsinfo.addons.SDPCHAIN, 236
obsinfo.instrumentation.channel, 224
G obsinfo.instrumentation.equipment, 228
get_gitlab_file() (ob- obsinfo.instrumentation.filter, 228
sinfo.misc.remoteGitLab.gitLabFile static obsinfo.instrumentation.instrument_component,
method), 231 225
get_json_or_yaml () (0b- obsinfo.instrumentation.instrumentation,
sinfo.misc.yamlref. JsonLoader method), 223
232 obsinfo.instrumentation.orientation, 229
gitLabFile (class in obsinfo.misc.remoteGitLab), 231 obsinfo.instrumentation.stages, 227
obsinfo.misc.configuration, 230
| obsinfo.misc.const, 230

obsinfo.misc.discoveryfiles, 230
obsinfo.misc.printobs, 231
obsinfo.misc.remoteGitLab, 231

infofiles_path (obsinfo.misc.discoveryfiles.Datapath
attribute), 230

input_units obsinfo.instrumentation.stages.Stages . }
P property)(297 f & & obsinfo.misc.yamlref, 232
installation da7te (0b- obsinfo.tests.remoteGithub, 235
sinfo.instrumentation.equipment. Equipment obsinfo.version, 237
attribute), 228 O
Instance() (obsinfo.misc.configuration.Singleton
method), 230 obsinfo.addons.LC2SDS
instrument (obsinfo.instrumentation.channel. Channel module, 236
attribute), 224 obsinfo.addons.LCHEAPO
Instrumentation (class in ob- .module, 235
sinfo.instrumentation.instrumentation), 223 obsinfo.addons.SDPCHAIN
Instrumentations (class in ob- module, 236)
sinfo.instrumentation.instrumentation), 224 obsinfo.instrumentation.channel
InstrumentComponent (class in ob- .modu}e, 224) _
sinfo.instrumentation.instrument_component), obsinfo.instrumentation.equipment
226 module, 228
isRemote() (obsinfo.misc.remoteGitLab.gitLabFile ©°bsinfo.instrumentation.filter
static method), 231 module, 228
obsinfo.instrumentation.instrument_component
J module, 225
JsonLoader (class in obsinfo.misc.yamlref), 232 0b51;f3 .llnsztzr;mentatlon. instrumentation
JsonRef (class in obsinfo.misc.yamlref'), 232 . odu _e’ . . .
JsonRefError. 233 obsinfo.instrumentation.orientation
T module, 229

246 Index

obsinfo, Release 0.110

obsinfo.instrumentation.stages
module, 227
obsinfo.misc.configuration
module, 230
obsinfo.misc.const
module, 230
obsinfo.misc.discoveryfiles
module, 230
obsinfo.misc.printobs
module, 231
obsinfo.misc.remoteGitLab
module, 231
obsinfo.misc.yamlref
module, 232
obsinfo.tests.remoteGithub
module, 235
obsinfo.version
module, 237
obspy_equipment (ob-
sinfo.instrumentation.equipment. Equipment
attribute), 228

obspy_equipment (ob-

attribute), 228
replace_refs() (obsinfo.misc.yamlref.JsonRef class
method), 233
resolve_pointer()
method), 233
resource_id (obsinfo.instrumentation.equipment. Equipment
attribute), 228

(obsinfo.misc.yamlref.JsonRef

S

sample_rate (obsinfo.instrumentation.instrument_component.Datalogger
attribute), 225

seed_band_base_code (ob-
sinfo.instrumentation.instrument_component.Sensor
attribute), 227

seed_code (obsinfo.instrumentation.channel. Channel
property), 225

selected_config (ob-

sinfo.instrumentation.equipment. Equipment

attribute), 228

(class in ob-
sinfo.instrumentation.instrument_component),
226

Sensor

sinfo.instrumentation.instrument_component. InstrygeitsGORBMWER obsinfo.instrumentation.equipment. Equipment

attribute), 226

Orientation (class in
sinfo.instrumentation.orientation), 229

orientation (obsinfo.instrumentation.channel. Channel
attribute), 224

output_units (obsinfo.instrumentation.stages.Stages
property), 227

ob-

P

Preamplifier (class in ob-
sinfo.instrumentation.instrument_component),
226

print_component() (obsinfo.misc.printobs.PrintObs
static method), 231

print_instrumentation() (ob-
sinfo.misc.printobs.PrintObs static method),
231

print_network() (obsinfo.misc.printobs. PrintObs
static method), 231

print_station() (obsinfo.misc.printobs. PrintObs
static method), 231

PrintObs (class in obsinfo.misc.printobs), 231

process_script() (in module ob-
sinfo.addons.LC2SDS), 236

process_script() (in module ob-
sinfo.addons. LCHEAPO), 235

process_script() (in module ob-

sinfo.addons.SDPCHAIN), 236

R

attribute), 228

Singleton (class in obsinfo.misc.configuration), 230

Stages (class in obsinfo.instrumentation.stages), 227

stages (obsinfo.instrumentation.instrument_component.Datalogger
attribute), 225

stages (obsinfo.instrumentation.instrument_component.InstrumentCompo
attribute), 226

stages (obsinfo.instrumentation.instrument_component.Sensor
attribute), 227

stages (obsinfo.instrumentation.stages.Stages attribute),
227

start_date (obsinfo.instrumentation.channel. Channel
attribute), 224

T

to_obspy () (obsinfo.instrumentation.channel. Channel
method), 225

to_obspy) (obsinfo.instrumentation.equipment. Equipment
method), 228

type (obsinfo.instrumentation.equipment. Equipment at-
tribute), 228

V

validate_path (obsinfo.misc.discoveryfiles.Datapath
attribute), 230

vendor (obsinfo.instrumentation.equipment. Equipment
attribute), 228

removal_date (obsinfo.instrumentation.equipment. Equipment

Index

247

	Overview
	Introduction
	Object Model
	Information Files
	File Hierarchy
	File Naming Convention
	File Metadata

	Resources

	Installation and Startup Guide
	Prerequisites
	Linux
	Windows

	Python installation
	Python packages
	Git installation
	Obsinfo installation
	Description of obsinfo file structure
	Obsinfo setup
	File discovery

	Command-line tools
	obsinfo-setup
	obsinfo-makeStationXML
	obsinfo-validate
	obsinfo-print

	Tutorial
	Introduction
	Basic YAML syntax
	YAML data types
	YAML variables
	Code reuse
	YAML anchors

	The general structure of information files
	File Hierarchy
	File Naming Convention
	File Metadata

	A simple subnetwork file
	Fundamentals of an information file
	File discovery

	subnetwork
	stations
	instrumentation
	Locations
	Channel modifications
	Complete example

	Building a simple instrumentation file with channels
	Equipment
	channels and channel default
	Orientation Codes
	Configurations
	Channel modifications

	Notes and extras
	Complete example

	Building instrument component files with response stages: sensors and preamplifiers
	A simple sensor component
	Stages
	Configuration definitions
	Complete example sensor file
	Preamplifier configuration definitions

	Building a datalogger information file
	Datalogger configuration definitions

	Building a stage information file with different filters
	delay, offset and correction attributes
	Polarity

	Building a filter information file for different filters
	PolesZeros
	FIR
	Analog and Digital
	ANALOG to DIGITAL Converter

	Summary
	Conclusion

	Information files
	Overview
	Concepts
	Hierarchy
	1) Basic level diagram
	2) Atomic level diagram with comments
	Major objects
	subnetwork
	network
	station
	instrumentation_base
	channel
	datalogger_base
	preamplifier_base
	sensor_base
	GENERIC_COMPONENT
	stage_base
	filter

	Minor objects

	3) Full level diagram
	Structural units

	base-configuration-modification
	Shortcuts
	Non-base elements
	location:
	clock_correction_linear:

	Specific modifications

	Comparison with StationXML
	Summmary of differences
	redYAML_ instead of XML
	arrays instead of multiply-used fields:

	Use of $ref s to insert other files
	Use of base channels and specific modifiers
	Default inheritance of some fields
	No sensitivity stage in obsinfo
	Handling of InstrumentComponents
	Handling of positions

	Line-by-line comparison of differences

	Comparison with AROL/YASMINE
	Nomenclature
	AROL verus obsinfo configuration methods
	nanometrics/TAURUS-G-1.response.yaml
	nanometrics/TAURUS-G-2.response.yaml
	nanometrics/TAURUS-G-04.response.yaml
	nanometrics/TAURUS.100.response.yaml
	nanometrics/TAURUS.200.response.yaml

	Converting obsinfo files to AROL
	Converting AROL files to obsinfo
	Directly using AROL files in obsinfo

	Examples
	Basic - two channel
	Basic atomic - two channel
	Basic atomic + configuration - two channel

	Datacite information files
	Introduction
	Entity
	RelIdent
	Funder

	Advanced
	Base-configuration-modifications
	Base-configuration-modifications
	Overview
	Structure
	Basic
	Max structure

	Each element explained
	base
	configuration
	modifications
	<non-base>
	<shortcut>
	channel-modifications
	response-modifications

	elements using base-configuration-modifications
	Multi-level, multi-stage elements
	Level-based priority

	Channel_modifications
	Specifying the channel to change
	Specifying an element to change

	stage_modifications

	Abstract examples
	Priority levels
	Only specified sub-elements are changed
	Multi-level priorities
	Modifications > configuration > base priority
	stage_modifications > channel_modifications > modifications
	As complicated as it gets

	Concrete examples
	Specifying a datalogger’s sampling rate
	Locations
	Clock drift
	Changing a sensor
	Chained configurations
	Setting a custom value from the subnetwork file
	A complete network file with channel_modifications:

	AROL compatibility
	Best practices
	Place instrumentation information files in a central repository
	Use a file hierarchy for different objects
	Validate all information files bottom up
	Verification of stages in information file
	Reuse information files
	Document information files with notes, extras and comments
	Placement of stages in information file
	How to modify individual stages
	Use of channel modifications
	How to use notes
	Base your info files in templates

	Notes
	Date formats

	Caveats
	Caveat: Effect of $ref
	Caveat: Cryptic syntax messages
	Caveat: Use of response stages
	Caveat: Treatment of sample rates in response stages
	Caveat: ALWAYS follow the syntax and beware of $ref overwriting your attributes

	Troubleshooting
	Addons
	LCHEAPO
	SDPCHAIN
	LC2SDS
	OCA

	Nomenclature
	Training Course
	Introducing obsinfo
	Philosophy and comparison to other systems
	File formats
	Compared to StationXML files
	Compared to RESP files
	Compared to AROL

	Metadata creation systems
	Compared to PDCC
	Compared to IRIS DMC IRISWS
	Compared to YASMINE

	File formats
	The Tutorial
	Structural units
	Comments, notes and extras
	Configurations, channel modifications and shortcuts
	Configurations
	Channel Modifications
	Shortcuts
	Other sources

	Details
	delay, offset, and correction
	Details
	Command-line files

	Setting up
	Installation
	Copy an example database into your own folder
	Create a StationXML file
	Test the other command-line codes

	Creating a StationXML file using your own instruments and deployments
	Creating a network file (using the example instruments)
	Adding your own sensor/datalogger/analog filter
	Adding your own instrumentation
	Putting it all together

	Advanced issues
	Creating a processing pathway
	Storing and accessing your instrument database online

	Future plans
	obsinfo v0.111
	Replace “network” with “subnetwork”
	Bring instrument modifiers under station:instrumentation
	Make “person” fields compatible with StationXML Person
	Make uncertainties into objects with measurement_method
	Remove intrumentation:operator field from schema
	Make “operator” conform to StationXML standard
	StationXML errors to fix in new version 0.111
	Generalize base-configuration-modification

	Developer’s Corner
	Introduction
	Python architecture
	Executables
	Package and Modules
	Auxiliary subdirectories
	obsinfo/data/schema
	obsinfo/_examples/
	obsinfo/tests/

	Comments on versioning

	Classes
	Information File Tree
	Filter Types
	Network
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	FDSNNetwork
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Operator
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Station
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Instrumentation
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Equipment
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Channel
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Instrument
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	InstrumentComponent
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Navigation

	Sensor
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	SeedCodes
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Preamplifier
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Datalogger
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Stages
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	Calculated Attributes
	JSON schema
	Example
	Class Navigation

	ResponseList
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Stage
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	Calculated Attributes
	JSON schema
	Example
	Class Navigation

	Filter
	Description
	Superclass
	Subclasses
	Relationships
	Attributes
	JSON schema
	Example
	Class Navigation

	ADConversion
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Analog
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Coefficients
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Digital
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	FIR
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	PolesZeros
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Processing
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example

	LinearDrift
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	Calculated Attributes
	JSON schema
	Example

	LeapSecond
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Location
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	LocationBase
	Description
	Python class:
	YAML / JSON label:
	Corresponding StationXML structure

	Object Hierarchy
	Superclass
	Subclasses
	Relationships

	Attributes
	JSON schema
	Example
	Class Navigation

	Fundamentals
	__str__()
	Verify reading of attributes_dict

	Delay correction
	Base-Configuration-Modifications
	Classes using base-configure-modification:
	YAML structure:
	ORDER OF PRIORITY
	Multi-level priorities

	Specification in schemas
	Implementation in the code
	obsmetadata.py
	get_super()
	get_configured_modified_base()
	safe_update()
	Files/classes involved

	Instrumentation class
	Channel class
	Instrument class
	InstrumentComponent class
	Handling channel_modifications and stage_modifications
	subnetwork/station.py:
	instrumentation/instrumentation.py:
	channel.py:
	instrument.py:
	instrument_component.py:
	stages.py:
	stage.py:

	File discovery
	ObsMetadata
	Filters
	Schema files
	Logging
	Testing

	Technical Documentation
	Code Documentation: obsinfo package
	Subpackages
	obsinfo.network package
	obsinfo.network module
	obsinfo.network.network module
	obsinfo.network.Network class
	obsinfo.network.Station class
	obsinfo.network.Station class
	obsinfo.network.station module
	obsinfo.network.processing module

	obsinfo.instrumentation package
	obsinfo.instrumentation.instrumentation module
	obsinfo.instrumentation.channel module
	obsinfo.instrumentation.instrument_component module
	obsinfo.instrumentation.response_stages module
	obsinfo.instrumentation.filter module
	obsinfo.instrumentation.equipment module
	obsinfo.instrumentation.location module
	obsinfo.instrumentation.orientation module

	obsinfo.obsMetadata package
	obsinfo.obsMetadata.obsmetadata module

	obsinfo.main package
	obsinfo.main.makeStationXML module
	obsinfo.main.print module
	obsinfo.main.setupObsinfo module
	obsinfo.main.validate module

	obsinfo.misc package
	obsinfo.misc.configuration module
	obsinfo.misc.const module
	obsinfo.misc.discoveryfiles module
	obsinfo.misc.printobs module
	obsinfo.misc.remoteGitLab module
	obsinfo.misc.yamlref module

	obsinfo.tests package
	obsinfo.tests.remoteGithub module
	obsinfo.tests.test module
	obsinfo.tests.testmain module

	obsinfo.addons package
	obsinfo.addons.LCHEAPO module
	obsinfo.addons.SDPCHAIN module
	obsinfo.addons.LC2SDS module

	obsinfo.print_version module
	obsinfo.version module

	CHANGELOG
	Indices and tables
	Python Module Index
	Index

